LYNDON-DEMUSKIN METHOD AND CRYSTALLINE LIFTS OF G,-VALUED
GALOIS REPRESENTATIONS

LIN, ZHONGYIPAN

ABSTRACT. We develop obstruction theory for lifting characteristic p local Galois representations val-
ued in reductive groups of type Bj, C;, D; or G2. An application of the Emerton-Gee stack then
reduces the existence of crystalline lifts to a purely combinatorial problem when p is not too small.
As a toy example, we show for all local fields K /Q,, with p > 3, all representations p : Gx — G2(Fp)
admit a crystalline lift p : Gx — G2(Z,), where G is the exceptional Chevalley group of type Ga.
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1. Introduction

Let K/Q, be a p-adic field. Let G be a connected reductive group over Z,. Let p : Gx — G(F,)
be a Galois representation.

We will study whether there exist crystalline lifts of p to G(Z,). This question has been raised in
multiple papers, for example, (i) irreducible geometric Galois representations [NCS18], (ii) the Serre
weight conjecture [GHS18], (iii) ramification theory [CL11].

The pursuit of constructing characteristic 0 lifts of Galois representations (at least in higher dimen-
sions) is, however, resistant to elementary techniques. [B03] is able to lift mod w representations to
a mod w? one, for G = GLy. [Mul3] constructed crystalline lifts of mod = represntations valued in
G = GL3, and recently [EG23] worked the GLy-case for all N. Our earlier work [L22] answers this
question for semisimple representations valued in general reductive groups G.

The method of [EG23] is purely local, and is based on an analysis of Galois cohomology. The
image group p(G) is either an irreducible subgroup of G(F,) or factors through a proper maximal
parabolic P of G. In the former case, our previous work [L22] shows p always admits a crystalline
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lift. In this paper, we focus on the latter case. Let P = L x Up be the Levi decomposition. Let
7: Gk % P(F,) — L(F,) be the Levi factor of 5. Then 5 defines a 1-cocycle [¢] € H (G, Up(F,)).
What we will actually do is to construct a lift 7 : Gx — L(Z,) of 7 and a lift [c] € HY(Gk,Up(Zy))
of [¢].

In the GLy-case, all maximal proper parabolics have abelian unipotent radical, so it suffices to
consider abelian cohomology. When G is not GLy, parabolic subgroups with abelian unipotent
radical are rare. For example, when G is the exceptional group Go, all parabolics have non-abelian
unipotent radical.

Fortunately, for groups of type A, B, C', D or G, the relevant non-abelian Galois cohomology can
be replaced by abelian Galois cohomology equipped with a cup product structure and the strategy
considered in [EG23] can be adapted to work. In this paper, we focus on the Ga-case, and prove the
following theorem:

Theorem A (Theorem 7.2). Assume p > 3. Every mod w Galois representation valued in the
exceptional group Ga
p:Gr — Go(Fy)
admits a crystalline lift p° : Gx — Go(Zy).
Moreover, if p factors through a maximal parabolic P = LxU and the Levi factor 75 : Gxg — L(F,) of

p admits a Hodge-Tate reqular and crystalline lift r1 : Gx — L(Zy) such that the adjoint representation
Gk -5 L(Z,) — GL(Lie(U(Z,))) has Hodge-Tate weights slightly less than O (Definition 5.0.2), then
p° can be chosen such that it factors through the maximal parabolic P and its Levi factor v, lies on
the same irreducible component of the spectrum of the crystalline lifting ring that r1 does.

1.1. Overview of the method and comparison with [L23] To establish the existence of crys-
talline lifts, we proceed in four steps:

(Step 1) construct explicit cochain complexes equipped with a natural cup product structure that com-
pute abelian Galois cohomology,

(Step 2) show that the cup product considered in (Step 1) is non-trivial in certain special cases,

(Step 3) compute the dimension of certain substacks of the reduced Emerton-Gee stack,

(Step 4) invoke the machinary of [EG23] to produce crystalline lifts.

After the first draft of this paper was written, we have a more conceptual understanding of some
constructions made in this paper; see the introduction section of [L.23]. For example, section 2 and
section 4 of this paper are conceptualized under the notion of Heisenberg equations. In loc. cit., we
also establish the existence of de Rham lifts for many classical groups and in particular the existence
of crystalline lifts for unramified unitary groups.

However, from the technical perspective, loc. cit. parallels this paper, instead of upgrades this paper.
In loc. cit., we use Herr complezes as the explicit cochain complex computing Galois cohomology. Herr
complexes are infinite dimensional cochain complexes and are often not amenable to computation by
hand. We can truncate Herr complexes to a finite dimensional cochain complex but the truncation
can’t be made explicit in general. The upside of Herr complexes is better functoriality and in the case
of classical groups, we can usually reduce the problems to the GL,-case, which is well-understood.

In this paper, we use Lyndon’s cochain complexes instead. Everything in this paper are totally
explicit and are computable by hand or by a computer algebra system. The downside of this approach
is that the complexity of computation grows exponentially, and quickly becomes out of hand for
large-ranked classical groups.
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We don’t know how to deal with Herr complexes for exceptional groups because of their implicit
nature, and the approach in this paper is still the only one we are aware of. In this paper, we estab-
lish the existence of crystalline lifts for the exceptional group Gs, which illustrates the usefulness of
Lyndon’s cochain complexes. Because of its explicit nature, our approach can potentially be extended
to deal with more general exceptional groups, after upgrading the cup product structure to more
complicated higher Massey product structures.

1.2. Obstruction theory for crystalline lifting

In this paper, we consider the case where Up admits a quotient U such that
e The adjoint group U2 := U/Z(U) is abelian;
e The center Z(U) is isomorphic to G,; and B B
e There is a bijection of obstructions “H?(Gg,Up(F,))” =~ “H*(Gk,U(F,))”.

We call U a Heisenberg quotient of Up. When G is of type B, C;, D; or Gs, it is always possible to
choose a parabolic P whose unipotent radical admits a Heisenberg quotient (see subsection 1.1).

Let Spec R be an irreducible component of a crystalline lifting ring Spec R;ryS’A (Definition 5.0.2)
of 7. Let r"™V : Gx — L(R) be the universal family. The Levi factor group acts on U via conjugation
¢ : L — Aut(U). Write ¢*4 : L — GL(U?) and ¢* : L — GL(Z(U)) for the graded pieces of ¢.

The theorem we prove is:

Theorem B (5.2.1). Let [¢] € HY(Gk,U(F)) be a characteristic p cocycle, where U is a Heisenberg
quotient of Up.
Assume

1] H*(Gg,d*(r"™V)) is sufficiently generically regular (Definition 5.1.1) and set-theoretically
supported on the special fiber of Spec R;

2] p+#2;

[3] There exists a finite Galois extension K'/K of prime-to-p degree such that ¢(7)|a,, is Lyndon-
Demuskin (Definition 2.0.2); and

[4] There exists a Zy-point of Spec R which is mildly regular (Definition 3.0.1) when restricted to
Ggr.

Then there exists a Zp—pomt of Spec R which gives rise to a Galois representation r° : Gg — L(Zp)

such that if we endow U(Z,) with the G -action G -, L(Zy) 2, Aut(U(Zy)), the cocycle [¢] has a
characteristic 0 lift [c] € HY(Gk,U(Zy)).

Remark [3] is automatically satisfied if p is sufficiently large; and [4] is automatically satisfied if p is
sufficiently large and the labeled Hodge-Tate weights ¢24()\) are slightly less then 0 (Definition 3.0.2).

1.2.1. Example: G = GL3

Let p : Gk — GL3(IF,) be a completely reducible Galois representation. There are two ways of
encoding the data of p as a 1-cocycle in Galois cohomology.
(I) Use the fact p factors through a maximal parabolic

P= =LxA

S ¥ *
S % ¥
S ¥ *
S % %
* O O
X
S O =
O = O
— % %
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where A ~ G®? is a rank-2 abelian group. Let 7 : Gx P(F,) — L(F,) be the Levi factor of p. The
information of p is encoded in a 1-cocycle [¢] € HY (G, (7)) =: H(Gg, A(Fp)). We first construct a
lift 7° : G — GLa(Zy) of 7. Then we construct a lift [c] € HY (G, A(Zy)) of [¢].

(IT) Use the fact p factors through a Borel (minimal parabolic)

* % £ 0 0 1 % =
B=10 % #[=10 %« 0|x |0 1 *|=TxH
0 0 = 0 0 = 0 0 1

where the Levi group T is a maximal torus, and the unipotent radical H is the Heisenberg group. Let

7 : Gg — T(F,) be the Levi factor of p. To reconstruct p from #, we only need the information of
a 1-cocycle [¢] € HY(Gk, H(F,)). We first construct a lift of 7, and then construct a lift of . Now
HY(Gk, H(F,)) is non-abelian Galois cohomology.

We make use of the graded structure of Lie H when we construct a lift of [¢]. We have a short exact

sequence

1 0 = 1 =
1—-1]10 1 0| -H— |0 1 =] —1.
0 0 1 0 0 1

We will first construct a lift modulo Z(H), and then extend the lift modulo Z(H) to a cocycle on the
whole unipotent radical H.
Theorem B applies in this situation, so we have a new proof for the group GL3.

1.2.2. We have a short exact sequence of groups 0 — Z(U) — U — U — 0. Since Z(U) is a central,
normal subgroup, we have a long exact sequence of pointed sets

H'(Gx, Z(U)) - H (G, U) — H'(Gx,U™) & H (G, Z(U)).
Note that ¢ is a quadratic form, and there is an associated bilinear form
u: HY Gk, U x HY (G, U™) - H* (G, Z(U))
defined by z vy = (d(z + y) — d(x) — (y))/2.

The technical heart of this paper is an analysis of U on the cochain/cocycle level. So we need a
finite cochain complex computing Galois cohomology which interacts nicely with the bilinear form
u. Thanks to the theory of Demuskin groups, there is an explicitly defined cochain complex (the
so-called Lyndon-Demuskin complex) which computes H*(G g+, U*Y) and H*(G g, Z(U)) after a finite
Galois extension K'/K. When [K’ : K] is prime to p, we can fully understand cup products on the

cochain/cocycle level via Lyndon-Demuskin complexes endowed with G'x /G gs-action.
We have the following nice obstruction theory:

Theorem C (4.3.4). Let p # 2 be a prime integer. Let L be a reductive group over O and fix an
algebraic group homomorphism L — Aut(U). Let r : Gxg — L(Og) be a Galois representation.

If there exists a finite Galois extension K'/K of prime-to-p degree such that rlG,., is Lyndon-
Demuskin and mildly reqular, then there is a short exact sequence of pointed sets

H'(G,U(Zy)) — H (G, U(F,)) &> HA(G, U (Z,))
where § has a factorization H (G, U(F,)) &> H (G, U(F,)) — H* (G, UY(Zy)).
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1.3. Organization In section 2, we review the results of Lyndon and Demuskin and establish some
notations.

Section 3 and Section 4 form the technical heart of this paper.

Section 5 and Section 6 are mild generalizations of results from [EG23]. The proof is almost
unchanged and we often just sketch the ideas of the proof and invite the readers to look at the proofs
of [EG23].

We prove the main theorem in Section 7.

1.4. Acknowledgement I would like to thank David Savitt, for suggesting to me the project of
constructing crystalline lifts of Galois representations valued in general reductive groups, and for his
excellent advisoring. I would like to thank Matthew Emerton for teaching me his work [EG23]. I
also want to thank the referees for very careful reading and thank Joel Specter and Xiyuan Wang for
helpful discussions.

2.  Lyndon-Demuskin theory

Assume p # 2.

Let K/Q, be a finite extension containing the p-th root of unity. The maximal pro-p quotient of
the absolute Galois group Gi has a very nice description. The following well-known theorem can be
found, for example, in [Se02, Section II.5.6].

2.0.1. Theorem Let Gk (p) be the maximal pro-p quotient of Gx. Then Gk (p) is the pro-p comple-
tion of the following one-relator group

<ZL’0, to a$n+1|x(q)($07 $1)($2, $3) s (:Eny $n+1)>

where n = [K : Qp], and g = p® is the largest power of p such that K contains the ¢g-th roots of unity.

Here (z,y) = zyz 'y~ L

2.0.2. Definition A continuous profinite Gg-module A is said to be Lyndon-Demuskin if the image
of Gg — Aut(A) is a pro-p group.

2.1. Comparing cohomology of Demuskin groups and Galois cohomology
Let T'4¢ be the discrete group with one relator

{(xoy. .., Tp, xn+1|xg(:n0, x1)(22,23) - .. (Tpy Tpy1))-

Let K/Q, be a p-adic field containing the group of p-th root of unity. Let A be a Lyndon-Demuskin
G -module. Write H*(I'4¢) A) for the usual group cohomology, and write H*(Gf, A) for the contin-
uous profinite cohomology.

Note that there is a functorial map

() H*(Gx, A) — H* (I, A)

induced from the forgetful functor Modcont (G (p)) — Mod(I'4is¢).
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2.1.1. Lemma Let F), be the Gx-module with trivial G g-action. Then (f) induces isomorphisms:
(1) H'(Gi,Fy) = H' (I )
(2) HX(Gy,Fy) = BT, );
Proof. (1) We have
HY(Gg,Fp) = Homeont (G, Fp) = Homeont (G (p), Fp);
Hl(Fdisc7 Fp) _ HOIn(FdiSC,Fp).
Note that Homeon (G (p), Fp) = Hom ('Y€ F,) because G (p) is the pro-p completion of T'disc.

(2) We have a commutative diagram

HY(Gk,Fp) x HY(Gk,Fp) —— H*(Gg,F))

| | l

Hl(rdisc’]Fp) % Hl(FdiSC,IFp) Y H2(FdiSC,IE‘p)

Note that the first row is a non-degenerate pairing, and H?(G, F,) = F, by local Tate duality. By
Lyndon’s theorem or Corollary 2.2.0.3, we have H 2(FdiSC,IE“p) =~ F,. So it remains to show the cup
product of the second row is non-trivial. Let [c1], [ca] € HY (I F,). [c1] U [e2] = 0 if and only if
there exists a group homomorphism

. 1 ¢ =
FdlSC N 1 ¢y
1
1 ¢ =z
for some #. Indeed, if ¢; U ¢y = dz for some z € C1(T'45¢ ), then Tdis¢ — 1 ¢o| is a group
1

homomorphism by unravelling the definition of cup products; here C! (FdiSC, IF,) is the usual cochain
group defining group cohomology. Define ¢; : T45¢ — ), by sending x; to 1 and other generators to 0,
i =0,1. Then it is clear [c1] U [c2] # 0. O

2.1.2. Corollary Let A be a finite F)-vector space endowed with Lyndon-Demuskin G g-action. Then
there is a canonical isomorphism H*(Gg, A) = H*(T'4 A).

Proof. Let Gi(p) be the maximal pro-p quotient of Gg. Then A is a Gg(p)-module. Since G (p)
is a pro-p group, A must contain the trivial representation F,. In particular, there is a short exact
sequence

0->Fp,—A—A -0

which induces the long exact sequence

HO(GK,A/) 4>H1(GK,IFP) 4>H1(GK,A) 4>H1(GK,A/) 4>H2(GK,IFP)

| | l | |

HO (Fdisc’ A/) Hl (Fdisc7 ]Fp) Hl (1‘\disc7 A) Hl (Fdisc’ A/) H2 (Fdisc7 Fp)

We apply induction on the length of A. By the Five Lemma, we have H'(Gg, A) = HY(T'dsc, A).
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We also have the long exact sequence

HY(Gg,A') —— H*(Gk,F,) — H*(Gk,A) —— H*(Gg, A') —— H3(Gk,Fp)

| | | | |

Hl (Fdisc7 A/) H2 (Pdisc? Fp) H2 (Fdisc’ A) H2 (Fdisc, A/) H3 (Pdisc? Fp)

By Lyndon’s theorem, H?(I'Y¢ F,) = 0. By local Tate duality, H*(Gk,F,) = 0. Again by the
Five Lemma, we have H?(Gg, A) = H?>(I'Y*¢, A). Finally, both cohomology groups are supported on
degrees [0, 2]. O

By induction on the order of A, (f) is an isomorphism for any finite p-power torsion group A.

2.1.3. Corollary Let A be a finite Z,-module endowed with Lyndon-Demuskin G g-action. Then
there is a canonical isomorphism H* (G, A) = H*(T'ds¢, A).

Proof. We have a short exact sequence for each k > 0,

0 — lim' H* Gk, A/p'A) > H*(Gk, A) — imH*(G k., A/p'A) — 0,

3 K3

see, for example [stacks-project, Tag OBKN]; here ligll is the derived inverse limit. The first term is 0
i
due to the finiteness of the cohomology of torsion G g-modules. So H*(Gk, A) = imH*(Gx, A/p'A),

1
and the corollary is reduced to the p-power torsion case.

We can do the same thing for the discrete cohomology. Since any finite Z,-module is p-adically
complete, the Lyndon-Demuskin complex (see the last subsection of Section 2) computing H*(T'4s¢, A)
is the inverse limit of the Lyndon-Demiskin complex mod p?. So H*(Td¢, A) = limH krdise A/pt). O

(2

The lemma above tells us that, for our purposes, the cohomology groups of G (p) can be computed
via the discrete model. So we can make use of the fine machineries of combinatorial group theory.

2.2. Discrete group cohomology of Demuskin groups
The main reference of this subsection is [Ly50].

2.2.0.1 Derivations A derivation of a group G is a left G-module M, together withamap D : G - M
such that D(uv) = Du + uDw.

Say Fis a free group with generators x1,...x,,. Denote by dF'J the module of universal derivations.
Then dF'J is the free Z[F]-module with basis {dz;|i = 1,...,m}.

Let ©w € F. We can write du € dF'J as a linear combination of the basis elements: du = %dmi

where (% € Z[F]. The computation rules for 6%- can be found in the first line of page 654 of [Ly50].
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2.2.0.2 Theorem (Lyndon, [Ly50, Theorem 11.1]) Let G = {(x1,...,zy|R) be a one-relator group
where R = Q7 for no ¢ > 1. Let K be any left G-module. Then

oR oR

H*(G,K) ;K/(Tm""aT

VK
and H"(G,K) =0 for all n > 2.
2.2.0.3 Corollary We have H2(I'is¢ F,) = F,,.

Proof. We have the following computation:

OR _ _
aigjo = 1+$0++x82+$8 1$I1
OR 1 1
o zd e (o — 1)
OR
ore 2§ (xo, )2y (w3 — 1)
OR
Frie w (w0, a1)xy wy (2 — 1)
oR .
@ = $8($0,$1) - (wop—2, xzk—l)ﬂ«"zkl (og41 — 1)
oR o
OTopi1 2§ (20, 21) -+ (T2k—2, Top—1)5y Ty (Tor — 1)
Since H?(T4s¢ F,) = GG }F.paR/an), it suffices to show
OR OR
—F,=- = F, =0.
5m0 axn-{—l
. . .. .. OR _ oR _ OR _ _
Since Fy, is a trivial G g-module, it is clear ST, = ... aan]Fp = (. We also have Sog = 1+1+- 41 =
q = 0 mod p. O

2.2.1. Proposition Let A be a Gg-module whose underlying abelian group is a finitely generated
Zp-module such that the image of Gi in Aut(A) is a pro-p group. Then

oR oR
H*(Gr,A) = A)(=—,...,=—)A
(o) = A/(S s 5
where R = z{(xo,21)(z2,23) ... (Tn, Tnt1).
Proof. Combine Corollary 2.1.3 and Lyndon’s theorem. g

2.3. Lyndon-Demuskin Complex
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2.3.1. Abelian coefficient case Let A be a G x-module whose underlying abelian group is a finitely
generated Z,-module such that the the image of Gk in Aut(A) is a pro-p group.
Then there is an explicit co-chain complex computing the Galois cohomology H*(G g, A).
1 2
Define Cfy(A4) = [CPp(A) <, Clp(4) <, C?,,(A)] as the following cochain complex supported on
degrees [0,2]

T

1—2x9 ﬁR/ﬁxo

A 1-— Tn+1 A@(n+2) 8R/0xn+1 A

Then by [Ly50, Theorem 11.1]
H*(Cip(A)) = H*(Gk, A).
The idea of Lyndon Demuskin complex is simple. A 1-cochain ¢ € CL(A) is simply a set-theoretical
function
c:{xg,...,xpy1} — A

We can extend ¢ to be a function on the free group
c:{xy, ..., Tnt1) — A
by setting c(gh) := c(g) + g - ¢(h) for any g, h in the free group with (n + 2) generators. Let
R = z{(x0,21)(w2,73) . .. (Tns Tnt1)

be the single relation defining the Demuskin group. The differential operator d? : Cip(A) — CE(A)
is nothing but the evaluation of the extended map c at the relation R, that is, d?(c) = ¢(R). So a
1-cochain c¢ is a 1-cocycle if and only if its evaluation at R is 0.

2.3.2. Nilpotent coefficients Let £/Q, be a finite extension with ring of integers O, residue field
F, and uniformizer .

Let U be a unipotent (smooth connected) linear algebraic group over Spec Op, admitting an upper
central series

1=UOCU1"-CUk=U.

Assume there exists an embedding ¢ : U <> GLy < Matyy such that (s(z) —1)**! =0 forall z € U.
Write log = log;, for the truncated logarithmic function 1+ x +— z — 22/2 + -+ - + (=1)F 12k /.

Assume p > k. There is an isomorphism of schemes U =~ Lie U sending g — log g, defined through
the following commutative diagram

U GLy

llog ilog

LieU —— MatNxN

We assume k = 2 from now on because it suffices for our applications.

Fix a Galois action Gx — Aut(U)(Og) such that the image group is a pro-p subgroup of Aut(U)(Og).

Let A be an Og-algebra. Recall that a non-abelian crossed homomorphism valued in U(A) is a map
c¢:Gg — U(A) such that

c(gh) = c(g)(g - c(h))
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for all g,h € Ggk. Set ¢ :=log(c) : Gxg — LieU(A). By the Baker-Campbell-Hausdorff formula,
1
() elgh) = c(g) + g~ c(h) + Se(g), g - e(h)].
Our definition of the Lyndon-Demuskin cochain complex is motivated by (7).
2.3.2.1 Definition Let A be an Og-algebra. The Lyndon-Demuskin complex with unipotent coeffi-
cients is defined to be the following cochain complex C},(U(A)) supported in degrees [0,2]:

LieU(A) 45 (LieU(4))®+2 L, LieU/(4)
where d' is defined by

1
dl(v) =(—v+x; v+ 5[—1}, zi - v])i=0,...n+1-

We need some preparations before we define d?. An element ¢ = (ag, -+ ,an41) € Cip(U(A)) can be
regarded as a function on the free group with (n + 2) generators

c:{xg, ++ ,Tny1y — LieU(A)
by setting c(z;) = «; for each i and extending it to the whole free group by

clgh) := clg) + g c(h) + 5[elg). - c(h)]

We define d? as
d*(c) := ¢(R) = c(xd(z0, 21) (w2, 23) . . . (T, Tpt1))-

2.3.2.2 Remark (1) When U is an abelian group, we recover the definition in the previous section
for the cohomology of the abelian U(A);
(2) The main reason we define C7 (U (A)) this way is because we want to compare it with C7(Lie U (A)).
Note that Cf(LieU(A)) and Cf(U(A)) have the same underlying group, but their differential d*
is different.
(3) Note that d?(c) = 0 if and only if ¢ defines a crossed homomorphism ¢ : G — Lie U(A) in the
sense of (). See the proof of Proposition 2.3.2.4.
(4) The differential maps are generally non-linear.

2.3.2.3 Definition We define Z ;) := (d'*1)71(0), and B}, := d*(C{p') for i = 0, 1,2.

2.3.2.4 Proposition We have

H®(Gk, U(A)) = Zip(U(A))
and a surjection of pointed sets

Zip(U(A)) — H'(Gk,U(A)).

Proof. H*(Gk,U(A)) is by definition the Gg-fixed point subset of U(A), while ZP5(U(A)) is the
subset of U(A) whose elements are fixed by the xg,..., zp41: if u € U(A) is fixed by x;, then
u~Y(z; - u) = 1 and taking truncated log of both sides we get d*(logu) = 0.

H!(Gg,U(A)) is by definition the set of equivalence classes of crossed homomorphisms, and Zi, (U(A))
is the set of crossed homomorphisms. O
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LieU has a lower central series filtration. Let Z(U) be the center of U. Write U2 for U/Z(U).
Since U is unipotent of class 2, Lie U is isomporphic to its graded Lie algebra Lie U = gr*(LieU). We
will fix a grading LieU =~ Z(U) ® U of the Lie algebra Lie U once for all. In particular, we fixed a
projection pr: LieU — Z(U).

2.3.3. Cup products Let c € L (U*(A)). Let ¢ € Cl,(U(A)) be the (unique) lift of ¢ such that
pr(c(zg)) = ...pr(¢(zns1)) = 0. Define
Q(c) := pr(d*(2)) = pr(&(R)) € CLp(Z(U)(A)).

Lemma Q(—) is a quadratic form, that is, (z,y) — Q(xz + y) — Q(z) — Q(y) is a bilinear form.

Proof. In Definition 2.3.2.1, we defined it so that &(gh) := &(g) +g-&(h) + £[(g), g-&(h)]. So after fully
expanding the expression, ¢(R) = >, aic(wi) + X, ;[Bic(:), vic(x;)], where s, B;, v € (xo, . . ., Tnt1)-
Thus Q(c) = pr(X; cvic(ws) + X [Bic(i), vic(z;)]) = X, pr([Bic(xi), vic(x;)]), which is clearly a
quadratic form. O

We define
Cip(U*(4)) x Cip(U™(A)) = Cip(Z(U)(A))

ruy = 5(QE +y) - Q) - Q)

which is a symmetric bilinear form.
Remark Alternatively, we can choose an arbitrary lift ¢ of c. Now pr(d?(¢)) is an inhomogeneous
polynomial of degree two. We recover ) by taking the homogeneous part of degree two.

2.3.3.1 Lemma Under the identification CL(U(A)) = CL,(U(A)) @ CL(Z(U)(A)), we have
Zip(U(A)) = {(z,y) € CLp(U™(A) @ Cip(Z(U)(A)|d*z = 0, x v x + d*y = 0}.

Proof. Tt is obvious from the definition of d and Q. The projection of d?(z,y) to C2p (U4 (A)) is d*a;
and the projection of d?(z,y) to C?(Z(U)(A)) is z u = + d?y. O

Write Hi(U24(A)) for
Zip(U™(A))/Bip(U*(A))
and write Hi(Z(U)(A)) for ‘ ‘
Zip(Z(U)(A))/Bip(Z(U)(A)).

2.3.3.2 Lemma The pairing U on the cochain level induces a symmetric pairing on the cohomology
level

Hip(U™(A)) x Hip(U™(4)) = Hip(Z(U)(A)).

Proof. 1t suffices to show for all € Zl(U*)(A) and y € Bl,(U)(A), Q(z + y) — Q(z) €
B2, (2(U)(4)).

Let & € CL5(U(A)) be the unique extension of x such that pr¥ = 0. The cochain 7 represents
a group homomorphism pz : (xg, -, Tpt+1) = U(A) 3 {xo,- -+ ,Tp+1|R) such that pz(R) = 1 mod
Z(U)(A). More explicitly, we define pz(x;) = (exp(Z(z;)), x;) where exp is the truncated exponential
map (the inverse to the truncated log map). Since y is a coboundary, there exists n € U(A) such that

npzn ! is represented by a cocycle (z+, f) extending x +y (we are exploiting the abelian coefficients
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here). We have npz(R)n " !pz(R)™' =1 € U(A) x {(xg, - ,Tp11|R) since pz(R) lies in the center of
U(A). Since Q(z +y) — d*(f) = npz(R)n~" and Q(z) = pz(R), we have Q(z +y) — Q(z) = d°f €
BEp(Z(U)(A)). O

Recall Z},(U(A)) and Z{(LieU(A)) are both subsets of Cf ,(U(A)).
2.3.3.3 Lemma If Z(U)(F) =~ F, then

Zip(U(F)) < Zip(Lie U(F))

that is, the non-abelian cocycles with U (F)-coefficients are automatically abelian cocycles with (Lie U (F))-
coeflicients.

Proof. We have remarked in 2.3.2.2(2) that CﬁD( (F)) and C{p(LieU(F)) have the same underly-
ing space. By Lemma 2.3.3.1, an element of Z{,(U(F)) is a pair (z,y) such that d’z = 0 and
rux+diy =0 Byour assumptlon C’L(Z(U)(F)) = H*(Gk, Z(U)(F)) (Corollary 2.2.0.3) and
thus B2, (Z(U)(F)) = 0 and d®> = 0. So d*y = 0 automatically, and (z,y) defines an element of
Z1, (Lie U(F)). 0

3. An analysis of cup products

Let F be a p-adic field with ring of integers Op, residue field F and uniformizer w.
Let U be a smooth connected unipotent group of class 2 over Spec Op, with center Z(U) =~ G,.
Write U for U/Z(U). Assume U2 =~ GP* is a vector group.

3.0.1. Definition Let K’ be a p-adic field. A Lyndon-Demuskin action Gg — Aut(U)(Og) is said
to be mildly regular if the following are satisfied:

(MR1) HO(Gor, U(E)) = 0

(MR2) The bilinear pairing

ur : CLp(U*(F)) x CLp(U™(F)) — CEp(Z(U)(F))

is non-degenerate.

3.0.1.1 Remark In practice U is the unipotent radical of a parabolic subgroup of a reductive group
and (MR2) is equivalent to “p being not too small”. We worked out the Gy-case in Appendix A,
and showed that if p > 5, (MR2) always holds. The same proof but with more complicated notation
should work for general reductive groups.

In general, (MR2) can be checked by computer algebra systems because it is a finite field vector
space question for a finite number of small p’s. We include an algorithm (written in SageMath) in
Appendix B.

The following proposition is a summary of Appendix A:

Proposition If U is the unipotent radical of the short root parabolic of G2 or the quotient of the
unipotent radical of the long root parabolic of G5 by its center, then (MR2) is true when p > 5.
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3.0.2. Definition Given a tuple of labeled Hodge-Tate weights (see [EG23, Subsection 1.12] for the
definition) )\, we say A is slightly less than 0 if for each o : K/ — @p, Ay consists of non-positive
integers, and for at least one o, A, consists of negative integers. (The cyclotomic character has
Hodge-Tate weight —1.)

3.0.3. Proposition Assume p > 5. If U is the unipotent radical of the short root parabolic of
G5 or the quotient of the unipotent radical of the long root parabolic of Gy by its center, then
G — Aut(U)(Og) is mildly regular if U24(E) is Hodge-Tate of labeled Hodge-Tate weights slightly
less then 0.

Proof. If H*(G g+, U*(E)) # 0, then for all embeddings o : K <> Qp, 0€ Ay
The proposition now follows from the Proposition in Remark 3.0.1.1 and Appendix A. U

3.1. Cup products mod w

3.1.1. Lemma The image of Zl (U (OF)) — Ci(U*(F)) has codimension at most dimg U*4(E).

Proof. Say dimy C{(U?4(F)) = ranke, Cip(U*4(Og)) = N.
Since Z{, (U4 (Ofg)) is the kernel of Cl, (U2 (Og)) — C*, (U4 (Og)), and ranke,, C2(U*(OF)) =
dimp U*(E), we have

ranko, Zip(U*(Og)) = N — dimg U*(E).
Since C2p,(U4(OF)) is torsion-free, Zi,(U*4(Og)) is saturated in CL,(U(Og)), and is thus a
direct summand. In particular, the image of Zl (U (Og)) in CL,(U(F)) has dimension > N —
dimp U(E). O
3.1.2. Lemma If
ur : CLp(U*(F)) x CLp(U™(F)) — CEp(Z(U)(F))
is non-degenerate, then the kernel of
s : Zip(U(Or))/@ x Zip(U*(Op))/w — Cip(Z(U)(F))

has dimension at most dimg U*!(E).

Remark Note that Z},(U*(F)) # Z},(U*(Og))/w in general.
The kernel of a bilinear pairing is also called the annihilator.

Proof. For ease of notation, write C for C{p(U*4(F)), and write Z for the image of Z{(U*d(OF)) in
C. Note that Z =~ Z1,(U(Og))/w by the proof of the above lemma.

Let K c Z be the kernel of ug. Since the cup product on C is non-degenerate, there exists a
subspace F' < C of dimension equal to that of K, such that the restriction of the cup product to (F+K)
is also non-degenerate. Since FF nZ =0, dimC > dim(F + Z) = dim Z + dim F' = dim Z + dim K.
The lemma now follows from the previous lemma. O

We also record the following lemma whose proof is similar.
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3.1.3. Lemma (1) The image of Z{,(U*{(F)) — CL,(U*(F)) has codimension at most dimg U*}(E).
(2) If
ur : CLp(U*(F)) x CLp(U™(F)) — CEp(Z(U)(F))

is non-degenerate, then the kernel of

Ur : Zip(U(F)) x Zip (U™ (F)) — Cip(Z(U)(F))

has dimension at most dimg U*!(E).

3.2. General cup products in group cohomology

In this subsection, we give a reinterpretation of Definition 2.3.3, which is convenient for theoretic
applications.

Let V' be a unipotent algebraic group of class 2 over Og. Let I' be an abstract group, together with
a homomorphism 0 : I' - Aut(V)(Opg). By the Lie correspondence, Aut(Lie V) =~ Aut(V'), and thus
0 induces a Opg-linear I'-action on Lie V' which respects Lie brackets.

We fix a grading LieV = V; @ V5 such that [Vi, V1] € Vi, and [V, V,] = 0. We will write V' for
V(Og) for simplicity.

Let f : ' — V be a crossed homomorphism. By definition, for any ¢1,92 € T, f(g192) =
f(g1)g1f(g2). Write ¢ = ¢1 + co for log(f), where ¢; values in V) and ¢y values in Vi, By the
Baker-Campbell-Hausdorff formula, we have

(%) clgh) = c(g) + ge(h) + [c(g), ge(h)]/2
= (c1(g) + ge1(h) + (ca(g) + gea(h)) + [c1(g), ger (h)]/2

3.2.1. Lemma Let a,be H'(T',V}) be two crossed homomorphisms. The 2-cochain B(a,b) : (g, h)
[a(g), gb(h)] is a 2-cocycle.

Proof. By definition, we have

d*(B(a,b))(g1, 92 93) = g1[a(g2), g2b(gs)] — [d'a(g1,92), 9192b(g3)]
+ [a(g1), 91d"b(g2, g3)] + [a(g1), 91b(g2)]
= g1[a(g2), 920(g3)] — [a(g1) + g1a(g2), 9192b(g3)]
)

+ [a(g1), 91b(g2 +91gzb( 3)] + [a(g1), g1b(g2)]
=0 |

For crossed homomorphisms a € H'(T", V}), define Q(a) := B(a, a). By comparing (*) and paragraph
2.3.3, it is not hard to see the Q(—) defined in this subsection coincides with that of 2.3.3 for 1-cocycles
when I' is the discrete Demuskin group.

Since a U b := (Q(a +b,a+b) — Q(a) — Q(b))/2 = (B(a,b) + B(b,a))/2, we have a U be H?*(T',Vs).
Again the cup product defined in this subsection coincides with the 2.3.3 when the settings overlap.

3.2.2. Lemma Let I” < T be a normal subgroup of finite index. Write A for I'/T".
The cup product U : HY (I, V) x HY(T',V4) — H?(I",V3) is A-equivariant.

Proof. Let a,b € H(I'',V}), and let 0 € I'. We have by definition o - a(g) = ca(c 'go), and
o-B(a,b)(g,h) = cB(a,b)(c'go, 0 ho) (see [Se02, Section 1.5.8]). We immediately have o B(a,b) =
B(o-a,o-b). O
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3.2.3. Example: the completely split case In this paragraph we analyze the special case where
the G action on U*d(F) = Lie U*!(F) is trivial and H?(Gg, Z(U)(F)) = Z(U)(F) = F. Tt will be
used in the proof of Theorem 3.3.1.

Since the center of Lie U is one-dimensional, the Lie bracket

[_7_]

Lie U*(F) x Lie U%4(F) Z(U)(F)
is a non-degenerate, alternating pairing. Choose a basis {eq,--- , ey, €}, -, €} } of Lie U?4(F) such that
[ei €] = [ei,ej] = 0 and [e;, €}] = —[e}, e;] = d;;. Since by assumption the Gxr-action on U(F) is

trivial, the cup product
U H (G, UM(F)) x H (G, U (F)) — H*(Gr, Z(U)(F))
is isomorphic to the (exterior) direct sum of cup products
Uit HY (G, Fe; ®Fel) x HY(Ggr,Fe; @ Fel) — H (G, F)

Write A for the usual cup product H'(Gg/,F) x HY(Gg/,F) — H?(Gg:,F) which appears in local
Tate duality. By definition, for a,b € H'(Gg:,F) we have

Q(ae; + bel) = B(ae; + be,, ae; + be,)
= ((g:h) = [a(g)e: + b(g)e;; a(h)e; + b(h)e;])
= ((g,h) = (a(g)b(h) — b(g)a(h))
=anb—>bnara
=2anb
and thus for a1, b1, a9, b € Hl(GK/,F)
B(aje; + biel, ase; + bael) = 2(ay A by + ag A by)

Since A is a non-degenerate pairing, B is also a non-degenerate pairing.
3.3. Nontriviality of cup products

3.3.1. Theorem Let K'/K be a finite Galois extension of p-adic fields of prime-to-p degree. Let
r: Gxg — Aut(U)(Op) be a continuous group homomorphism.
If r|g,., is Lyndon-Demuskin and mildly regular, then one of the following are true:

() H?(Gie, Z(U)(F)) = 0, or
(ii) the symmetric bilinear pairing

HY Gk, U(Og))®F x HY(Gg, U (Op)) @F — H*(Gg, Z(U)(O)) F
is non-trivial.
Remark Note that Hi, (U*(Op)) =~ HY(G/, U (OF)), and HY (G g+, U (Op))9% = HY (G, U (Of)).

The symmetric pairing in the theorem is the restriction to H'(Ggs, U*4(Og)) of the symmetric pairing
defined in Lemma 2.3.3.2.
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Proof. Assume H?(Gy, Z(U)(F)) # 0. Consider the diagram
HY(Gk, U (Op)) x H (G, U (OF)) — H*(Gk, Z(U)(OF))

HY (G, U (Op)) x HY(Gxr, U*(Op)) — H*(G k1, Z(U)(Op))

| T

Zip(U*(Og)) x Zip(U*(Op)) C*(Z(U)(Op))

By Lemma 3.1.2, the kernel of

HY Gy, U(OR))/w x HY Gk, U(O))/w — H* (G, Z(U)(F))
has F-dimension at most dimg Ud(E). Write A for G /G, which acts on H'(G g+, U (Og)) with
fixed-point subspace H' (G, U (OF)).

By an averaging argument (explained below), the kernel of

H' (G, U(Op))/w x H'(Gx, U (Op))/w — H* (G, Z(U)(F))
is contained in the kernel of

H' (G, U (Op))/w x H'(Ggr, U(Op))/w — H*(Ggr, Z(U)(F))
and thus has F-dimension at most dimg U*(E). (Let [c] € H (Gk, U (OF))/w and suppose [c] U
[d] = 0 for all [d] € H(Gk,U*(Og))/w. Let [¢'] € HY(Gk:,U(Og))/w. Then Y o([c]u[c]) =
[l U, eald] = 0. Since H*(Gg, Z(U)(F)) # 0, we have H?(G g, Z(U)(F)) = H*(Gg+, Z(U)(F)) and
thus Soea a(lc] U [¢]) = #Aa(]e] o []).

We remark that as a finitely generated module over a DVR, H' (G, U?(Og)) is the direct sum of
its torsion-free part and its torsion part; and H' (G, U (E)) = HY(Gk, U (OFg))torson-free Q0 E-

By the local Euler characteristic,
dimg H (G, U(E)) = dimg H(Gg,U(E)) + dimg H(Gx, U (E)) + dimg U (E)[K : Q]

> dimp H*(Gg,U(E)) + dimg U(E).
We will now consider two possibilities: H2(Gf, U(F)) # 0 and H?(Gg, U (F)) = 0.

Case H?(Gr,U(F)) # 0. Since H?(Gg,U(F)) # 0, H*(Gk, U (Og)) is non-trivial.
So either we have dimg H?(Gg,U*(E)) > 0, or H*(Gg,U*¥(Og)) has non-trivial torsion. If
H?(Gg,U?(OFg)) has non-trivial torsion, then again by the local Euler characteristic (mod w ver-
sion), HY(Gg,U*(OFg)) also has non-trivial torsion. In either case, dimp H'(G,U?(Og))/w =
dimp U?4(E) + 1. So the kernel of the cup product is a proper subspace of H'(G, U (Og))/w.

Case H?(Gg,U*(F)) = 0. By Nakayama’s Lemma, H?(G,U(0Og)) = 0. By [EG23],
there exists a perfect Op-complex [C? — C! — C?] concentrated in degrees [0,2] which computes
H*(Gg,U(Og)). By the universal coefficient theorem, there exists a short exact sequence

0> H (C*)®F - H(C* ®F) — Tor’?(H*(C*),F) — 0
1

So HY (G, U (Og)) o, F = HY (G, U (F)). We assume (i) and (ii) are false, and try to get a
contradiction. The kernel of

HY Gk, U(0R))®F x HY(Gk, U (0Or)) @F — H*(Gk, Z(U)(Op)) F
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has dimension h! := dimp H'(Gx, U*4(F)). By the local Euler characteristic,
(*) Al = dimp UY(E)[K : Q,] + dimp HO (G, U (F)).
By Lemma 3.1.3, the kernel kz of
Zip(UM(F)) x Zin(UM(F)) — HA(Gxer, Z(U)(F))
has dimension at most dimg U?!(E). Since the cup product is trivial on H'(Gx, U (F)), we have
(**)  dimkz > dim H(G, U(F)) + dim Bl (U*(F)) = h! + dim Bl (U(F)).
Combining (x) and (xx), we have
dimg U*(E) > dimp kz = dimp U(E)[K : Q] + dimp H(Gfe, UY(F)) + dim Bl (U*(F))

So we conclude that

1=[K:Q)]

0= H(Gg,U™(F))

0 = Bip(U*(F))
In particular, we have H°(G' g/, U24(FF)) = U24(FF), and the kernel of the cup product on H' (G, U4(FF))

has dimension exactly dimg U?(E). However, by Example 3.2.3, the cup product on H' (G g, U4(FF))
is non-degenerate by local Tate duality. (]

Theorem 3.3.1 is used in the following scenerio.

3.3.1.1 Lemma Let L be a split reductive group over F. Let r : Gx — L(IF) be a Galois representation
valued in L. Let r** be the semi-simplification of r. Write G- for the kernel of r**. Then the degree
[K': K| divides (¢ — 1)"# W, where

e 1 is the rank of L,

e ¢ is a power of p, and

o #W7p is the cardinality of the Weyl group of L.

Proof. By [L22], r*¢ is tamely ramified and factors through the normalizer of a maximal torus of L
(after possibly extending the base field). O

In particular, if L = G and p > 3, the kernel of %% defines a Galois extension K'/K of prime-to-p
degree; and r|g,, is Lyndon-Demuskin since it has trivial semi-simplification.

4. Non-abelian obstruction theory via Lyndon-Demuskin cocycle group with external Galois

action

Let K/Q, be a p-adic field. Let E/Q, be a finite extension with ring of integers Op, residue field
FF, and uniformizer w.
Let L be a split reductive group over Og. Fix a Galois representation

r°: Gx — L(Og)

throughout this section.
Let U be a unipotent group over O whose adjoint group is abelian. Let Z(U) be the center of U.
The adjoint group U?! is defined to be U/Z(U).
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Fix a group scheme homomorphism ¢ : L — Aut(U) throughout this section. In particular, there

is a Galois action ¢(r°) : Gk LN L(Og) #On), Aut(U)(Og). We will talk about non-abelian Galois

cohomology H*(Gk,U(Og)) and H*(Gk,U(F)) using this Galois action throughout this section.
Let K'/K be a prime-to-p, finite Galois extension of K containing the group of p-th root of unity,
such that r°(Gg/) < L(Og) is a pro-p group. Write A for Gal(K'/K). Set I' := Gk, and H := Ggr.

4.1. Non-abelian inflation-restriction
4.1.0.1 Non-abelian Galois cohomology We recall a few facts about the non-abelian version of
Galois cohomology. Let

0-A—-B—->C-—0

be a short exact sequence of groups with continuous I'-action. If A — B is central, that is, A is
contained in the center of B, then we have a long exact sequence of pointed sets ([Se02, Proposition
43, 5.7])

1 > A - B - o
— HYI',A) - HYI",B) - H(T, 0)
% H(T, A)

Let H c T be a closed normal subgroup. Then there is an exact sequence ([Se02, 5.8])
(1) 1 — HYI'/H, A"y - H (I, A) — H'(H, A)"/H.

If A is an abelian group, then the sequence above can be upgraded to the inflation-restriction exact
sequence:

1 — HY(T/H, A"y - HY(T, A) — H'(H, A)"H - H*(I, AT).

4.1.0.2 Theorem [Ko02, Theorem 3.15] Let I" be a profinite group, H a normal subgroup of finite
index, and A an (abelian) G-module whose elements have finite order coprime to (I': H). Then

H™(I'/H,A") =0
for all n = 1, and the restriction
H™T,A) — H"(H, A)"H

is an isomorphism.
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Let R be either O or F. For ease of notation, write U for U(R) in this paragraph. The fact above
implies the following diagram commutes, with exact columns

HYT,Z(U)) — H'(H, Z(U))?

H'(I,U)“——— H'(H,U)*
ar a2
Hl(rjUad) i>H1(H Uad)A
5 02

H2(T, Z(U))—— H*(H, Z(U))

The injectivity of the second line follows from Equation (1).
4.1.0.3 Proposition The restriction map of non-abelian 1-cocycles
HYT,U) - HY(H,U)?

is a bijection.

Proof. Tt follows from diagram chasing: Let [c] € H'(H,U)?. Since 61 (res™*(az[c])) = d2(az[c]) = 0,
there exists [b] € H'(T,U) such that aj(res([b])) = az([c]). Since ag (aa([c])) is a H'(H, Z(U))*-
torsor, we can twist [b] to make res([b]) = [¢]. O

4.1.0.4 Representation-theoretic interpretation of non-abelian 1-cocycles Let T3 be a group
which is a semi-direct product £ x 4l Let gg : 8 — £ be the quotient map. Fix a section £ — B of gg,
which allows us to identify (set-theoretically) B with 4 x £; and write gy : P — 4 be the projection
map. For g € B, write g = gyge such that gy € U x {1} and gy € {1} x £. Let 7: ' — £ be a group
homomorphism. Let 7 : ' — B be a lifting of 7. Set ¢ :=qgyo7: ' — 4. Then

clgh) = qu(t(9)T(h)) = qu(T(9)uT(9)eT(R)uT(h)e)
= qu(r(9)u(g )sT( )ut(9)g ' T(gh)e)
= ( )(7(9)ec(h)T(9)g")

= c(9)(7(g)e - c(h))

is a (non-abelian) crossed homomorphism. Two liftings 71 and 79 are equivalent if there exists an
element n € 4 such that 7, = nen~1. So HY(T, U) classifies liftings 7 of 7 up to equivalence.

4.1.1. Lifting characteristic p cocycles via inflation-restriction
Let [¢] € HY(T, U(FF)) be a characteristic p cocycle. Assume the restriction [
a characteristic 0 lift [c;] € H'(H,U(Og)). We want to build a lift [¢] € H*

[en]-

¢ly] e HY(H,U(F)) has
HY(T,U(Og)) of [¢] using
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Note that when U is an abelian group, this can be easily achieved by taking the average

[c] := #AEQ cn)-

geA

Here we identify H'(I',U(Og)) with a subset of H'(H,U(OF)) via Proposition 4.1.0.3.
Such a trick does not work anymore when U is non-abelian. Nonetheless, we have the following:

4.1.1.1 Lemma If there exists [c4] € H'(H,U(OF)) and [d] € H (T, U*(Og)) such that

e as([ep]) = res([d]) and
e [cn] mod w = [¢|y]

then there exists [¢] € HY(T',U(Og)) which is a lifting of [¢].

HY(T, Z(U)(Op)) e~ H'(H, Z(U)(OF))

H'(D,U(OF))——5— H'(H,U(OF)) > [cn]
[de HYT,U(Op)) —== H'(H,U*(Og))
51 02

H*(T, Z(U)(Op))— H*(H, Z(U)(Op))

Proof. Since

d1([d]) = da(az([enl])) = 0,
[d] = a1([¢]) for some [¢'] € HY(T,U(Og)). Since res([c']) and [c;] € H'(H,U(Og)) have the
same image in H'(H,U*(Og)) (via az), it makes sense to talk about the difference res([c']) — [cn] €
HY(H,Z(U)(Og)). ' Consider the following diagram

Hl(RZ(jU)(OE))HHl(FaZfU)(F))4>H2 ', Z(U)(Ok))
HI(H, Z(U)(O)) — H'(H, Z(U)(F) —~ H*(H, Z(U)(Ox))
Let [¢] € HY(T', Z(U)(F)) be the reduction mod @ of [¢']. Since res([¢]) — [¢,] has a lift,
S(ees([] — [])) = 0 € HE(H, Z(U)(F)
by the exactness of the second row of the diagram above. Therefore
o(['] = [e]) = d(res([¢'] — [e])) = d(res([¢] — [en])) =0
and [¢] — [¢] € HY(T', Z(U)(F)) has a characteristic 0 lift [z], and [c] := [¢] — [z] is a lift of [¢]. O

The purpose of the whole Section 4 is to prove Theorem 4.3.2, which extends the above lemma.

LHY(H,U(OR)) is a H'(H, Z(U)(Og))-principle homogeneous space.
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4.2. External Galois action on the Lyndon-Demuskin cocycle group

The earlier subsection shows there is an identification
HYT,U(Og)) =~ H'(H,U(Og))A.

The goal of this subsection is to upgrade this identification to the cochain level.
Since the Galois action

¢(r)la g 1 Grr — U(Og)
is Lyndon-Demuskin, we have a Lyndon-Demuskin complex Cf,(U(Og)) computing H*(H,U(Og)).
Recall (2.3.2) that a 1-cochain ¢ € O (U(OF)) is the same as a function
¢:{xo, + ,Tnt1) — (LieU)(OF)
such that
c(gh) = e(g) +g-<(h) + 5[c(g). g ()]

for all g, h; or, equivalently, a function

c:{xo, s Tny1) — U(OR)
such that
c(gh) = c(g)(g - c(h))

for all g, h.

A cochain ¢ : (zg,  ,2p41) — U(Opg) lies in Zl5(U(OF)) if and only if it factors through the
(discrete) Demuskin group (xg, - - ,zn+1|R) (see the proof of Proposition 2.3.2.4).

Let ¢ € Z{(Og), regarded as a function {zy,...,zn+1|Ry — U(Og). Since U(Ofg) is a pro-p
group, the crossed homomorphism necessarily factors through the pro-p completion, that is, we have
a commutative diagram

<$07 cee ’xn+1‘R> CH. U(OE)

P

— P
Gk (p) (20, -+ s Tny1|R)
Since we have identified the pro-p quotient of Gk with the pro-p completion of {xg,- -, zp+1|R),

we can define, for each g € G, an automorphism «a, of Z{(U(OF)) via

ag(c) == (h— g-2lg~'m(h)g)).

So we defined an action of Gk on Z{(U(OF)).
For ease of notation, write g - ¢ for ay(c). Note that (g-c¢)(h) = (aq4(c))(h) is different from g - c(h).
We apologize for the confusing notation.

4.2.0.1 Remark We don’t know whether or not we can define a GGg-action on the whole cochain
group CL(U(Ofg)). Tt seems to involve some subtle combinatorial group theory.
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4.2.0.2 Digression It is curious to know if the cup product
U Zip(U(OR)) x Zip(U*(OF)) — Cip(Z(U(OR)))
is compatible with the G g-action.
This answer would be affirmative if, for example, for each g € Gk, the conjugation by g
¢g:Ggr — G
can be lifted to an automorphism of free pro-p groups on (n + 2)-generators

ng : <930» e v$n+1> - <5an T ,$n+1>-

This is closely related to the so-called Dehn-Nielsen theorem. Classically, Dehn-Nielsen is saying all
automorphism of the fundamental group of the genus g closed surface M, are induced by a homeomor-
phism. The algebraic version of Dehn-Nielsen can be formualted as, under the usual presentation of
F ={ai,b1, - ,aq4,bg) = {a1,b1,--- ,aq,bg|[a1,b1] - - [ag, bg]) = m1(My), all automorphism of 71 (M)
are induced from an automorphism of the free group F.

Conjecture (Pro-p Dehn-Nielsen) All automorphisms of the pro-p completion of {zg, - , Xn4+1|R)
are induced by an automorphism of the pro-p completion of (xq, -, Zp41).

4.3. Constructing non-abelian cocycles
Recall that H'(H,U)2 = HY(Gf,U?) where H = G and K’/K is a normal extension of
prime-to-p degree. Define
(Zip)® := {z € Ziplimage of z in H' is contained in (H')?}
= {zeZiplg -z —xe B}y forall ge G}
Since Z{ (U (Og))A is a submodule of a finite flat Og-module, it is finite Op-flat.

We keep all notations from the previous subsections.

Assume Z(U)(Og) = Op from now on.

We fix some notation. The quotient U — U/Z(U) = U induces maps ad : Zi,(U(Og)) —
Zi (U4 (Op)).

LD E

4.3.1. Lemma Assume p # 2 and the cup product
() U HY Gk, U (0g) ®F x HY (G, U (0Or) @F — H*(Gk, Z(U)(F))

is non-trivial.
Let (¢, f) € ZL,(U(F)) (using Lemma 2.3.3.1). Assume ¢ € ZL (U*(F))?. If ¢ admits a characteris-
tic 0 lift ¢’ € ZL, (U*)(Og), then (¢, f) admits a lift (c, f) € ZL,(U(Z,)) such that c € Z{,(U*4(Z,))~.

Proof. Pick an arbitrary lift f € CL(Z(U)(Og)) of f. Choose a system of representatives {g;} = G
of A. By replacing ¢ by the A-average #% > gi - + some coboundary (which is also a lift of [¢]),
we assume ¢ € Z} 5 (U*(Z,))".

Let A € Z) be a scalar.
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Since the symmetric bilinear pairing (f) is non-trivial, there exists y € ZLp(U*4(Og))? such that
yuy # 0 mod w. Consider

(+ ) u(d+ M) +d*(f) = ud +d(f) + 20 vy + N2y vy e C*(Z(U)(OR)) = Of

which is a degree two polynomial in A whose Newton polygon has vertices (0, +), (1, + or 0), (2,0) and
thus has at least one solution Ay with positive p-adic valuation; here “+” means a positive number.

Set (¢, f) :== (< + Aoy, f). _
We have (c, f) € Z}5(U(Z,)) by Lemma 2.3.3.1 and c € Z},(U*4(Z,))". O

4.3.2. Theorem Assume p # 2 and the cup product
v HY Gk, U(0p)) ®F x H'(Gk, U (OF)) ® F — H*(Gx, Z(U)(F))
is non-trivial.

Let [(¢,f)] € H'(Gk,U(F)) be a characteristic p cocycle. If [clg,,] € H' (Gx, U (F)) ad-
mits a characteristic 0 lift in H'(Ggr, U*(Z,)), then [(¢, f)] admits a characteristic 0 lift [(c, f)] €
HY (G, U(Zp)).

Proof. We choose a cocycle (¢, f) € ZﬁD( (F)) which defines the cohomology class [(¢, f)]. Clearly
ce Zin(UM(F))2. Say [d] € H' (G, U (Zy)) is a lift of [¢], which is defined by d € Z{,(U*Y(Z,)).
Write d for the image of d in Z1(U*4(F,)). By changing d by a coboundary, we can assume d = ¢.

»)
Lemma 4.3.1 produces (c, f) € Z{(U(Z,)) such that c € Z},(U*4(Z,))>. Now the theorem follows
from Lemma 4.1.1.1. O

Theorem 4.3.2 is saying that when U is a unipotent group of class 2 with 1-dimensional center,
there exists a short exact sequence of pointed sets

H'(Gx,U(Zy)) — H (G, U(F,)) > H2(Grr, UN(Z,))

under technical assumptions.
Combining Theorem 4.3.2 and Theorem 3.3.1, we have very nice obstruction theory for lifting mod
w cohomology classes in the mildly regular case.

4.3.3. Theorem Assume p # 2 and Z(U)(Og) = Og. Let r : Gk — L(Og) be a fixed continuous
group homomorphism and equip U(Z,) with the G g-action Gx — L(Z,) — Aut(U(Z,)). Let K'/K
be a finite Galois extension of prime-to-p degree such that r|g,, is Lyndon-Demuskin and mildly
regular.

There is a short exact sequence of pointed sets

H'(Gx,U(Zy)) = H' (G, U(F,)) > H (G, UM (Z,))
where § has a factorization H!(Gy,U(F,)) = HY(G, U (F,)) — H?(G s, U(Zy)).

Proof. Write A for Gx/Gkr. By the moreover part of Theorem 3.3.1, there are two cases to consider.
Case I: the cup product () H'(G g, U(Z,))®F x H (G, U(Z,))®F — H*(Gk, Z(U)(Z,))QF
is non-trivial. This is a corollary of Theorem 4.3.2.
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(Op) — Z(U)(Op) —
K, Z(U)(F)) — 0. By
0 by flat base change.

p(U

(Fp)).

Case II: H?(Gy,Z(U)(F)) = 0. The short exact sequence 0 — Z(
Z(U)(F) — 0 induces a long exact sequence H?*(Gf,Z(U)(Og)) — H?
Nakayama’s lemma, H*(Gg, Z(U)(Og)) = 0, and thus H*(Gg, Z(U)(Zy))

Let [(¢, f)] e Hl(GK, U(F,)) be a cohomology class defined by (¢, f) € Z.

Set 0 : HI(GK,U(IF ) — HQ(GK/, U*(Z,)) to be the composite

[(&)]—Ie]

U)
H2(G
-
LD

H' (G, U(Fy)) HY(Gr, U™(Fy)) — H* (G, U™(Zy)).

(Fp))
If 5([(¢, f)]) = 0, then there exists a lift ¢ € Z},(U*4(Z,)) of & By replacing ¢ by the A-average
of ¢, we assume c € Z{,(U*4(Z,))?. Since H2(GK, zZU )(Zp)) 0, [c u ¢] = 0 and thus there exists
g € Clo(Z(U)(Zy))A such that c U ¢ = —d?(g). Write g for the image of g in Clp(Z(U)(F,)). We

have g — f € Z,(Z(U)(F,))2. Since H*(Gy, Z(U)(Zy)) = 0, there exists a lift h e Z{(Z(U)(Z,))
of f —g. It is clear that [(c,g + h)] € HY(Gk,U(Z,)) is a lift of [(c, f)]. O

4.3.4. Corollary Assume p # 2 and Z(U)(Og) = Og. Let r : Gk — L(Og) be a continuous group
homomorphism.

If there exists a finite Galois extension K’/K of prime-to-p degree such that r|g,, is Lyndon-
Demusgkin and mildly regular, then there is a short exact sequence of pointed sets

H' (G, U(Zy) — H' (G, U(Fy) & HX(Gre, U(Zy))
where § has a factorization H' (G, U(F,)) = HY(G,U(F,)) — H?(Gg, U(Z)y)).

Proof. It is an immediate consequence of Theorem 4.3.3. (|

5. The Machinery for lifting non-abelian cocycles

Let K/Q), be a p-adic field. Let E/Q,, be the coefficient field with ring of integers Op, residue field
F and uniformizer w.

5.0.1. Emerton-Gee stacks Let H be a connected reductive group over K which splits over a tame
extension Ky /K. Denote by “H the Langlands dual group H x Gal(Ky/H) where H is the split
connected reductive group over Z whose root datum is dual to that of H. The reduced Emerton-Gee
stack XLy yoq is a reduced algebraic stack defined over I}, (see [L.23B, Theorem 1}).

Moreover, it is proved in many cases that Xy Ly req is equidimensional of dimension [K : Q,] dim H/B i
where Bj is a Borel of H (see [L23B]).

5.0.2. Potentially semistable lifting rings Write L := “H for simplicity. Let 7 : Gx — L(F) be
a mod w Langlands parameter, that is, a continuous group homomorphism such that the composite
Gk — LH(F,) — Gal(Ky/K) is the canonical quotient map. Let A be a Hodge type and let T be

a inertial Galois type (see [L23D] for the definitions). The potentially semistable deformation ring
R%’T’O of 7 of p-adic Hodge type A is constructed in [BG19, Theorem 3.3.8]. It is an O-flat quotient
of the universal lifting ring, and is equidimensional of dimension (1 + dim H + [K : Q] dim H/Bpy)

when A is a regular Hodge type.

5.1. A geometric argument of Emerton-Gee
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5.1.1. Definition Let F be a coherent sheaf over a scheme X = Spec R. We say F is sufficiently
generically reqular (= SGR) if for each s > 1, the locus

X := {x € Spec R| dim k(z) ®r F > s}

has codimension > s + 1 in Spec R.

5.1.2. Theorem Let X = Spec R with R a complete reduced, Z,-flat local ring that is equidimen-
sional of dimension (1 + dim L + dim X}, yeq). Let 7™V : G — L(R) be a family of L-parameters on
X. Assume X([1/p] # . Let F: L — GL(V) be an algebraic representation where V' is a vector
space scheme over Opg.

Assume H?(G g, F(r"™")) is SGR over X and is supported on X®z, F,,. Given any [¢] € H (G, F (7)),
there exists a 2p—point of X giving rise to a Galois representation r° : Gg — L(Zp), such that the
1-cocycle [¢] admits a lift [c] € H (G, F(r°)).

5.1.2.1 Remark Since H%(G g, —) (abelian coefficients) is the highest degree cohomology (H* (G, —) =
0 for i > 2), H?>(Gk,—) commutes with base change. Thus we may view H?(Gg, F(r"")) as a co-
herent sheaf over X.

The proof is almost identical to that of [EG23, Theorem 6.3.2].

We would like to explain the main ideas behind the proof, and why we need the sufficiently generi-
cally regular condition.

We have a complex of finitely generated projective modules over R concentrated on degree [0, 2]

- ct 4 c?
which computes the Galois cohomology H® (G, F(r'™V)). Let Z' := ker(d) and B? := Im(d). A mod
w cocycle [¢] is represented by an element ¢ in the kernel of C' /@ — C?/w. We fix an arbitrary lift
¢e C! of &. We can do a formal blowup Spec R — Spec R, so that the pull-back of B% on Spec R a
locally free sheaf. To make the exposition short, we simply assume B? is locally free over Spec R, but

we should not think of Spec R as a local ring anymore, because after formal blow-up, there are more
closed points in the special fiber. Now we have a sequence of locally free sheaves of modules

c!' - B? - (2

The key here is we want to regard this as a sequence of vector bundles instead of sheaves of modules.
Write #'(F) for Spec(Sym F"), the vector bundle associated to the coherent sheaf F. So we have a
sequence of scheme morphisms

d
/\
v L v(B2) — v(C?)

\fosT e

Spec R

The element & of C'! defines a section s : Spec R — #(C!) such that the section dos : Spec R — ¥ (C?)
intersects with the identity section ey 2y : Spec R — 7 (C?).

It turns out ¢ € ker(Cl'/w — C?/w) admits a lift in Z!, as long as the section f o s intersects
with the identity section ey (p2) of ¥ (B?%). The intersection (d o s) N ey (c2y should occur above a
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codimension 1 locus of Spec R. If the support of H? = C?/B? is small (that is, has big codimension),
then the intersection should happen at some point x € Spec R outside of the support of H2, and we
are done.

We include a formal proof here, as suggested by a referee.

Proof. We follow the notations of [EG23, Theorem 6.3.2] closely. The Herr complex C* (supported in
degrees [0,2]) computes H*(G, F(r*™)). Since B? equals to C? over the generic fiber U = X[1/p],
by [stacks-project, Tag 0815], there exists a U-admissible blowup 7 : X — X such that 7*B? is locally
free. Let C* be the pullback complex 7*(C*). The corresponding 2-coboundaries B2 = 7* B2 (since
it is the highest degree coboundary). Thus the 1-cocycles ART locally free and [6’0 -~ 7 11is a good
complex.

Lifting the class [¢] to an element of x ® C! (where r is the residue field of R) and then to an
element c of C!. ¢ can be thought of as a homomorphism R — C! whose i image under the coboundary
lies in mrC?. The composite b : R = C' — B? pulls back to a section b Og — B2, By [EG23,
Lemma 6.2.7] and the SGR property, b has non- empty zero locus, which contain a point Z lying over
the closed point x € X. The section ¢ pulls back to a section ¢ : O — 5’1, whose valued at the
point Z lies in the fiber of Z1. In other words, the fiber of ¢ at I defines a 1-cocycle in the complex
K(T) ® [CO — Z1], giving rise to a class e € H!(k(Z) @ [CY — Z!]) lifting the original class [¢].

Since X is Zy-flat, there exists a morphism .]? : Spec Z,, — X lifting 2. The composite f : SpecZ, ER
X — X lifts the closed point z € X, and determines an L-parameter r° : Gx — L(Z p). Since H2(C*)
is the kernel of the homomorphism of locally free sheaves B? < C? and is torsion, by [EG23, Lemma
6.2.1] there is an effective Cartier divisor D contained in the special fiber of X with the property
that for any morphism to X that meets D properly, the higher derived pullbacks of H 2((NZ") under

this morphism vanish. Since f meets the special fiber of X properly and thus meets D properly,
L;f*H?*(C*) = 0 for i > 0. Thus

HY Gk, F(r°)) = H'(f*C*) = f*HY(C*) = H'(F*[C° — Z']).
(See the last two paragraphs of the proof [EG23, Theorem 6.3.2] for explanations). Choose a class

e e HY( f [50 — 7 1) lifting €, which corresponds to a l-cocycle c lifting € by the identifications
above. g

5.2. A non-abelian lifting theorem

5.2.1. Theorem Let U be a unipotent linear algebraic group of class 2 whose center is isomorphic
to G,. Write Z(U) for the center of U and U?! for U/Z(U). Fix an algebraic group homomorphism
¢ : L — Aut(U) with graded pieces ¢*! : L — GL(U?!) and ¢* : L — GL(Z(U)).
Fix a mod w representation 7 : G — L(F). Let [¢] € H (Gk,U(F)) be a characteristic p cocycle.
Let Spec R be an irreducible component of a crystalline lifting ring of 7.
Assume
1] H?(Gg,#*d(r"v)) is SGR and is supported on the special fiber of Spec R;
2] p#2;
[3] There exists a finite Galois extension K'/K of prime-to-p degree such that ¢(7)|g,., is Lyndon-
Demuskin; and
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[4] There exists a Zp-point of Spec R which is mildly regular when restricted to Gg+. (In particular,
Spec R[1/p] # 0.)

Then there exists a Zp—point of Spec R which gives rise to a Galois representation 7° : G — L(Zp)

such that if we endow U(Z,) with the Gg-action Gx —— L(Z)) 2, Aut(U)(Z,), the cocycle [¢] has a
characteristic 0 lift [c] € HI(GK, U(Zyp)).

Proof. Take F = ¢* in Theorem 5.1.2. The theorem follows from Corollary 4.3.4. O

We explain how the above theorem will be used. Let GG be a connected reductive group over Op.
Let p: Gx — G(F) be a mod w representation. Assume p factors through a parabolic P ¢ G, with
Levi decomposition P = L x U. Denote by ¢ : L — Aut(U) the conjugation action. We assume U is
unipotent of class 2, so U?d is an abelian group. Write 7 for the Levi factor of p.

P(Fy)

F
e
Gx —= L(F,)

Then p defines a cohomology class [¢] € HY(Gf, ¢(7)), and the theorem above can be used to lift [¢].

5.3. An unobstructed lifting theorem
The following result will be used in the proof of the main theorem.

5.3.1. Proposition Let V be a unipotent linear algebraic group such that V(7 ) is equipped with
a continuous Gg-action. Let [¢] € HY(Gk,V(F,)) be a characteristic p cocycle. Let Z(V) be the
center of V, and write V24 for V/Z(V 7). The quotient V' — V2 induces a map ad : H'(Gg,V) —
HY(G, V). Assume H*(Gk, Z(V)(F,)) =

If ad([¢]) admits a lift in H' (G, Vad(Zp)) then [¢] admits a lift in H(Gk, V(Z,)).

Proof. By [Se02, Proposition 43|, since Z(V) is a central normal subgroup of V', there exists a long
exact sequence of pointed sets

H'(Gg,V(Zy)) —*% H Gk, V(L)) —2= H(Gk, Z(V)(Zp))

| | |

HY(Gie, V(Fy) —*= H (G, V¥ (Fy) —— H (G, (V) (Fy))
By Nakayama’s Lemma, we have H?(G ., Z(V)(Z,)) = 0. In particular, there exists [¢'] € H! (G, V(Zp)
such that ad([¢]) = ad([¢']) mod w. Write [¢] for [¢] mod w. Say [¢] = [¢] + [f] for some [f]
HY (G, Z(V)(Fp)) (recall that H' (G, V) is a H'(Gg, Z(V))-torsor). Since H'(Gg, Z(V)(Zyp)) = 0,
there exists a lift [f] of f. The cocycle [¢] := [¢] + [f] is a lift of [¢]. O
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6. Codimension estimates of loci cut out by H?

Assume p > 3. Let K/Q, be a finite extension. Let E/Q), be a finite extension with ring of integers
Opg, uniformizer w, and residue field F.

6.1. The Emerton-Gee stack

We follow the notation of [EG23]. For each d > 0, [EG23] constructed the moduli stack X; = X 4
of projective étale (¢, 'k )-modules of rank d, which is a finite-type algebraic stack over F.
We prove a mild generalization of [EG23, Proposition 5.4.4(1)].
Let T be a reduced finite type Fp—scheme. Let f: T — (Xa,red)]l}p X (XdJed)pr be a morphism. There
is a morphism
n: (Xa,red)]f?p X (Xd,red)]f?p - (Xad,red)ﬁ?p

sending a pair of (¢, I')-modules M, N to their hom module Homg (M, N), by the moduli interpre-
tation. The morphism 7(f) corresponds to a family pr of rank-ad Galois representations over 7. We
assume HQ(GK,ﬁn(t)) is of constant rank for all ¢t € T'(F,). By [EG23, Lemma 5.4.1], the coherent
sheaf H?(Gx, pr) is locally free of rank r as an Og-module.

By [EG23, Theorem 5.1.22], we can choose a complex of finite rank locally free Opg-modules

O b 2
computing H*(Gg, pr). Since H?(G g, pr) is a locally free sheaf, the truncated complex
CY) — Zp

is again a complex of locally free Op-modules. The vector bundle ¥ (Z7.) := Spec(Sym(Z})") associ-
ated to the locally free sheaf Z}. parameterizes all extensions

0— P(t) -7 - I_Fp —0, te T(Fp)
of the trivial G g-representation F, by Pr(t)- There are two projection morphisms

()1 : (Xa,red)IF‘p X (Xd,red)lﬁ_‘p - (Xa,red)Fp
and
02  (Xarea)r, ¥ (Xared)r, = (Xared)r,

For each t € T(Fy), f(t)1 € (Xarea)(Fp) corresponds to a rank-a Galois representation pt,, and f(t)2 €
(X red)(Fp) corresponds to a rank-d Galois representation py,. We have p, ) = Homgy (b1, pr,). So
we can also regard ¥ (Z7) is a scheme parametrizing all extensions

0—py =7 —py, >0, te T(Fp)
and we have a morphism sending extension classes to equivalence classes of G'i-representations

g: /'I/(ZTL) - (Xa+d,red)Fp~
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6.1.0.1 Lemma Let e denote the dimension of the scheme-theoretic image of T in (Xamed)pr X
(Xd,red)Fp- Then the scheme-theoretic image of V = #(Z}) in (Xa+d,red)]pp has dimension at most

e+r+adlK: Q.

Proof. Without loss of generality, we assume 7' (and hence V') is irreducible. The proof is a routine
calculation using stacks. We follow the proof of [EG23, Proposition 5.4.4] closely.

Let v € V(F,). Write ¢ for the composite SpecF, = V — T. Write f(t) for the composite f ot
Write g(v) for the composite g o v. Define

Tepy:=T X SpecF
f(t) fv(Xa,red)JFp X (Xd,red)]]?p 7f(t) P
Viwy =V X SpecF
g( ) gv(Xa,red)]f‘p X (Xd,red)]?pvg(v) P
Vi(t),900) = V(o) x SpecF,.

(Xa,red)]?p X (Xd,red)]?p 7f(t)

Note that Vi) g(v) = Ti(t) X1 V(u)-
By [stacks-project, Tag 0DS4], it suffices to show, for v lying in some dense open subset of V,

dim Vi (o) = dimV — (e + 7 + ad[K : Qp]).

Let psq), denote the Galois representation corresponding to f(t); : Spec F, — (Xa,red)IF‘p- Let py(),
denote the Galois representation corresponding to f(t)2 : SpecF, — (Xd,red)fb‘p- Say G, := Aut(ps), )
and Gy, := Aut(psq),). The morphism f(t) factors through a monomorphism

[SpeclF,/Gt,] x [SpecFp/Gry] = (Xawed)r, X (Xarea)s,
which induces a monomorphism

([SpeCFp/th] x [Spec IF‘p/Gtz]) x Vg(v) - Vg(v)'

Xa,red)F, X (Xd red)F,
So it suffices to show
() dim Vi gy = dimV — (e + 7 + ad[K : Qp]) + dim Gy, + dim Gy,

for v lying in a dense open of V.

There exists an étale cover S of (T (;))red such that the pull-back family pg is a trivial family with
fiber p;.

Let Cg — 7 é denote the pullback family of C’% — Zilp to S. Cg — 7 é is also the pullback family of
the fiber CY — Z} to S. Write W for the affine scheme associated to H' (G, Priy, ® Pf(t)s)- By the
isomorphism

HY(GK., 5} (1), ® Prr)s) = Extay (P Prcr))

there is a morphism W — (Xa+d,red)]1:~p. Denote by w the image of v in w. We have

S XT Vg(v) =9 x7 V Xy Wh(w)'



30 LIN, ZHONGYIPAN

Let V' be the kernel of S xp V — S X, W, which is a trivial vector bundle over 5. We have

dim Vf(t),g(v) = dim S XT %(v)
= rank V' + dim S + dim Wh(w)
= rank Zp — dim H' (G, p}y), ® Pr(p),) + dim S + dim Wy

Note that dimV — dim7 = rank Z%, and by local Euler characteristic I—IO(GK,/?JY@)1 ® Df(t)s) —
Hl(GK,ﬁ}’(t)l ® Pft),) + 1 = —ad[K : Qp]. We can replace T' by a dense open of T" where e =
dim T — dim T}y = dim T — dim S. Combine all these equalities, (f) becomes

dim Wiy = dim HY (G i, pf (g, ® Py(r),) + dim Gy, + dim Gy,
which follows from the fact that
HY(GK, Py ), ® Pry,) % (G x Gry) © Aut(py)
and dim Wj,(,,) = dim Aut(py,). O

We recall some terminology from [EG23]. Denote by ur, : G,, — A&} the family of unramified
characters of Gi. Let T be a reduced finite type F-scheme. Let T — X be a morphism, corresponding
to a family pr of Gi-representations over 7. We can construct the family of unramified twisting
prXur, over T x G,,. pr is said to be twistable if whenever p; =~ py ®ur, for t,t' € T(Fp) and a € I_F;,
we have a = 1. pr is said to be essentially twistable if for each t € T(F,), the set of a # 1 for which
Pt = pp @ur, is finite.

We say pr is untwistable if p is not essentially twistable.

From now on, write & = (X3 rea)s, for the moduli stack parameterizing (¢, I')-modules of rank 2.

Let 7' be the universal family of (¢, I')-modules over X'

6.1.1. Remarks on the word use “locus” Let (P) be a property that can be written as
(P) = (P1) — (P2)

where both (P1) and (P2) are closed conditions.

If X be a moduli stack of finite type over Fp, the the locus of objects satisfying property (Pi) is
by definition the scheme-theoretic of a finite type morphism Y — X such that all objects of X (Fp)
satisfying property (Pi) are in the image of Y(F,), i = 1,2.

The locus of objects satisfying property (P) is by definition the locus of objects satisfying (P1) —
locus of objects satisfying (P2).

6.2. Loci cut out by H?(Gy,sym? /det?)

3 (muniv —
Write H? for H?(Gk, %) Let z € X(F,) with corresponding Galois representation 7, :
GK i GL2 (Fp)
We are interested in H?(G g, sym? / det?) because it is a composition factor of the unipotent radical

of the short root parabolic of the exceptional group G, regarded as a representation of the corre-
sponding Levi factor.
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6.2.0.1 Lemma If 7, is irreducible, then

3 —
B2~ dime HA(Ge ),
z Mg ( K, det(Fx)Q)

Proof. An irreducible mod w representation is of the shape Indgg X for some character y of the
2
degree-2 unramified extension Ky of K. A direct computation shows

sym®(7,) = Ind(x*) @ Ind(x det 7).

Both H?(G, Ind(3%) yand H?(GF, M) has dimension at most 1. This is because the induction

det ()2 det ()2
of a character can’t be a direct sum of two isomorphic characters (when p # 2), by Shapiro’s lemma
and local Tate duality. O

6.2.0.2 Corollary H? is SGR when restricted to the irreducible locus.

Proof. Up to unramified twist, there are only finitely many irreducible representations. By Lemma
6.2.0.1, we have h2 < 2 when 7, is irreducible.

We first consider the sublocus where h2 = 2. This sublocus consists of finitely many irreducible G -
representations. Thus the sublocus in question is the scheme-theoretic union of the scheme-theoretic
images of finitely many morphisms SpecF, — X corresponding to the finitely many irreducibles. The
automorphism group of such an irreducible representation is G, and the morphisms Spec IF‘p - X
factor through [SpecF,/G,,] — X. The sublocus has dimension at most —1.

Then we consider the locus where h2 < 1. This sublocus consists of the unramified twists of finitely
many irreducible G g-representations. Thus the sublocus in question is the scheme-theoretic union of
the scheme-theoretic images of finitely many morphisms G,, — [G,,/G,,] — X corresponding to the
finitely many irreducibles, and has dimension at most dim [G,,,/G,,] = 0.

In either case, dim of locus < [K : Q,] — h2. O

6.2.0.3 Lemma If 7, is a non-trivial extension of two characters, then

sym3 (72) <1

" det(7,)?

and when the equality holds, the quotient character of 7, is a character whose third power is ]Fp(l).

hZ .= dim H*(Gk

Proof. This is where we make use of the assumption p > 3. Say 7, ~ X1 Xc ] We claim
| 2
Booxie s .
XiXe 2XiX2C

3/=

sym-(7) ~ XiX3  3xac

X5
which has a unique G g-invariant quotient line. Let {e1, e2} be a basis of the representation space of
7, such that e is an invariant line. Then {e$, e2es, e1€3, €3} is a basis of the representation space of
sym?3(7,). By duality, we only need to show sym?(7,) has a unique invariant line. Clearly {e3} defines
an invariant line. Assume there is another invariant line span(v). We quotient sym3(7,) by span(e3).
The quotient representation has a unique invariant line generated by the image of 6%62 (we postpone
the explanation to the next paragraph). So v € span(e, e2es). But then we must have v € span(e3),

since [¢] is a non-trivial extension class.
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The quotient representation sym?®(7,)/span(e3) has a Gx-invariant line spanned by the image of

2 3

ees. Say span(u) is another invariant line of sym?(7,)/span(e3). We have u € span(efes, eje3) =
X1X2 ® 7z. Thus u € span(e%eg) since ¢ is a non-trivial extension. O

6.2.0.4 Corollary H? is SGR when restricted to the locus where 7, is a non-trivial extension of two
characters.

Proof. Say 7, is the extension of 3 by @ By Lemma 6.2.0.3, we have h? < 1 when 7, is a nontrivial
extension of characters. So the locus where 7, is a non-trivial extension of characters consists of four
sub-loci:

(i) h2 =1 and Ext?(8,a) =
) h2 =1 and Ext?(3, ) ;é
(iii) h2 =0 and Ext*(8,a) = o and
(iv) h2 =0 and Ext?(8,q) #
Let T ¢ (Xl,red)pr X (Xl,red)l?p be the locus of the pair (o, 3), a, 8 € X rea(Fp); say dimT = e, and

dim Ext?(8,a) = . By Lemma 6.1.0.1, each sub-locus has dimension at most
e+r+[K:Qpl.
In sub-locus (i), 8 has only finitely many choices once « is chosen, so e = —1, r = 0; in sub-locus

(ii), both # and « have only finitely many choices, so e = —2, r = 1; in sub-locus (iii), both 8 and
« can vary in a dense open of (X:[’red)Fp, SO e = Qdim(XLred)Fp = 0, r = 0; in sub-locus (iv), when

« is chosen, S has only finitely many choices, so e = —1, r = 1. We can verify that in each case
e+r+[K:Qp <dimXx —h2 =[K:Q,]— h2. O
6.2.0.5 Lemma If 7, is a direct sum of distinct characters, then
3 —
sym®(7z)
H* (G, 2——2) < 2.
(G det (7 )2 )
- X1
Proof. Say 7, ~ [ _ ] We have
X2
sym3(7,)

v 2@l vl @ v v 2.
det(7)2 X1X2 @D Xo D X1 D X2X;
If ¥1 # X2, then the multiset {)‘(15(2_2, )‘(2_1, )Zl_l, )‘(1_2)_(2} contains at most 2 isomorphic characters. [

6.2.0.6 Corollary H? is SGR when restricted to the locus where 7, is a direct sum of distinct char-
acters.

Proof. By Lemma 6.2.0.5, we have h2 < 2 when Z = a ® f3 is a direct sum of distinct characters.

In the sublocus where hi = 2, we must have +a = £ = F(—1). The sublocus is the scheme-
theoretic union of the scheme—theoretic image of finitely many Spec I_Fp X Spec I_Fp — X and has dimen-
sion 0 — 2 = —2.

In the locus where h2 = 1, we have one of the following: (i) a = F(-1), (ii) 8 = F(-1), (iii)
a = (%(-1), (iv) B = a?(—1). In each of these cases, the locus has dimension dim G,,, —dim Aut(7,) =
1-2=-1.
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In the locus where h2 = 0, both a and 3 lives in an untwistable family, and the locus has dimension
2dim G,,, — dim Aut(r,) =2 -2 = 0. O

6.2.0.7 Lemma If 7, is a direct sum of isomorphic characters, then

2 Sym(x)
H*(Gg, (f)) < 4.

Proof. This is trivial because the underlying Fp—vector space is 4-dimensional. O

6.2.0.8 Corollary H? is SGR when restricted to the locus where 7, is a direct sum of isomorphic
characters.

Proof. The automorphism group is 4-dimensional. So the locus in the moduli stack has dimension
dim G,, — dim Aut(7,) =1 —4 = —3. O

6.2.0.9 Theorem The locus of 7, in X for which

3 —
sym®(7)
H?*(G, >
(G det (7, 2) =27
is of dimension at most [K : Q] —
Proof. This theorem follows immediately from Lemma 6.2.0.1, Lemma 6.2.0.3, Lemma 6.2.0.5, Lemma
6.2.0.7, and their corollaries. O

Fix a mod w representation 7 : Gg — GLo(F). Let A be a Hodge type. Let R be an irreducible

component of the crystalline lifting ring R;ryS’A’OE . Assume Spec R[1/p] # &. Let r"™V be the

universal family of Galois representations on R.
Since H?(G, %) is a coherent sheaf, by the semicontinuity theorem, the locus X, := {x €

Spec R| dim k(x) ®g H? > s} is locally closed, and has a reduced induced scheme structure.

6.2.0.10 Theorem Let R be an irreducible component of the crystalline lifting ring of regular labeled
Hodge-Tate weights. If H?(Gg sym®(r

) det (Tuniv)Q

univ

) is w-torsion, the locus

3 (,.univ
{x € Spec R| dim k(z) ®p H*(Gk, S(ifr?((lmw))) > s}
has codimension > s + 1 in Spec R for s > 1.

Proof. The proof is identical to that of [EG23, Theorem 6.1.1] if we use Theorem 6.2.0.9 instead of
[EG23, Theorem 5.5.12]. O
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7. The existence of crystalline lifts for the exceptional group G,

7.1. Parabolics of Gy
Let Go be the Chevalley group over Og of type Ga.
Let E/Qy be a finite extension with ring of integers Op, residue field F and uniformizer w.
We remind the reader of the root system of Go:

A 28+ 3

~

Root system of G

7.1.1. The short root parabolic Let P < (G2 be the short root parabolic, which admits a Levi
decomposition P = L x U. The Levi factor L is a copy of GLy and the unipotent radical U is a
unipotent, group of class 2. Write U for U/Z(U).
Fix an isomorphism std : L =~ GLs. We have

o Z(U) = G, and

o U =~ G,
Write LieU = Z(U) ® U*. The Levi factor acts on U by conjugation. We have an isomorphism of
L-modules ) )

- ~ 3
(*) LieU =~ @ Sym (Std) (‘B @

where det : L — (G, is the determinant character, and std : L =5 GLy is the fixed isomorphism. The
above short exact sequence can be upgraded to a short exact sequence of groups with L-actions

1
0> — - U — ——sym>(std) — 0.
det det? sym”(std)

For lack of reference, we explain how to get (#). By inspecting the root system for Go, we find that
the roots whose root group is contained in U?d lie in a single line. Therefore U?? is an irreducible
L-module, and is thus isomorphic to sym?3(std) up to an algebraic character; then computation shows
the character is 1/det? (also see the SageMath code on my homepage).

7.1.2. The long root parabolic Let ) — (G5 be the long root parabolic, which admits a Levi

decomposition Q = L' x V where L' =~ GLs and V is a unipotent group of class 3. Fix an isomorphism

std : L' = GLy. Write det for the composition L’ std, GL, get, GL;.
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Write U’ for V/Z(V). Then U’ is a unipotent group of class 2 whose center is isomorphic to G,.
The conjugation action of L' on U’ is given by U’/Z(U’) =~ std, and Z(U’) =~ det, as L'-modules.

7.2. Theorem Assume p > 3. Let K/Q, be a p-adic field. Let p: Gx — Ga(F,) be a mod w Galois
representation. Then p admits a crystalline lift p° : Gx — Ga(Z,) of p.

Moreover, if p factors through a maximal parabolic and the Levi factor 7 := 75 of p admits a Hodge-
Tate regular and crystalline lift r; such that the adjoint representation ¢'¢(r;) has Hodge-Tate weights
slightly less than 0, then p° can be chosen such that it factors through the same maximal parabolic
and its Levi factor r,e lies on the same irreducible component of the spectrum of the crystalline lifting
ring that r; does.

Proof. If p is irreducible, then p admits a crystalline lift by [L22].

The exceptional group G2 has two maximal parabolic subgroups: the short root parabolic, and the
long root parabolic.

If p is reducible, then it factors through either parabolic subgroups.

7.2.1. The short root parabolic case

Let P < G4 be the short root parabolic. Recall that P has a Levi decomposition P = L x U. Fix
an isomorphism L =~ GLs.

By Lemma 3.3.1.1, there exists a finite Galois extension K’/K, of prime-to-p degree such that 7|
is Lyndon-Demuskin.

Write Z(U) for center of U, and write U?4 for U/Z(U). Write ¢ : L — Aut(U) for the conjugation
action, with graded pieces ¢! : L — GL(U??) and ¢* : L — GL(Z(U)). Write ¢~ for ¢*! @ ¢*.

7.2.1.1 Lemma Assume p > 2. There exists a Hodge-Tate regular crystalline lifting 7° : Gx — L(Zj)

of the Levi factor 7, such that the adoint representation ¢™°(r°) : G o, L(Zy) — GL(LieU(Zy))
has labeled Hodge-Tate weights slightly less that 0.

Proof. 1t is well-known Hodge-Tate regular crystalline lifts of 7 exists since L =~ GLo. We have

PHe(re) = detlTOQ sym?(r°) @ detlr"' So by replacing r° by a Tate twist, we can ensure ¢¢(r°) has

labeled Hodge-Tate weights slightly less that Q.

g

Let Spec R be an irreducible component (with non-empty generic fiber) of a crystalline lifting ring
R;rys’é of regular labeled Hodge-Tate weights A such that the labeled Hodge-Tate weights ¢'€()) are
slightly less 0. By the lemma above, such a Spec R exists.

Let 7"V : G — L(R) be the universal Galois representation.

The mod w Galois representation 7 defines a Galois action ¢(7) : Gx — Aut(U(F,)) on U(F,). By
4.1.0.4, the datum of p: Gx — G2(F,) is encoded in a non-abelian cocycle [¢] € H (G, U(F,)).

The strategy for lifting p is as follows. We choose a suitable Z,-point x of Spec R which defines a lift
7 : Gx — L(Zp) of 7, and endow U(Z,) with the Galois action ¢(r;) : Gx ~> L(Z,) — Aut(U(Zy)).
There is a map of pointed set H'(G,U(Zy)) — H(Gk,U(F,)). If the cohomology class [¢] admits
a lift [c] € HY(Gk,U(Zp)), then p admits a lift p : Gx — G2(Z,) whose datum is encoded in [c].
Such a lift p is crystalline by the main result of [L.21], since ¢"€(r°) has labeled Hodge-Tate weights
slightly less than 0.



36 LIN, ZHONGYIPAN

By Theorem 5.2.1, to lift the non-abelian 1-cocycle [¢], it suffices to verify the following:

(1] H%(Gg,sym?(r"™V)/det?(r™")) is SGR and supported on the special fiber of Spec R;
2] p#2
3] There exists a finite Galois extension K’/K of prime-to-p degree such that ¢(7)|q,, is Lyndon-
K
Demuskin; and
[4] There exists a Zy-point of Spec R which is mildly regular when restricted to Gx-.

[1] is verified by Theorem 6.2.0.10. Note that since the Hodge type of Spec R is chosen so that
sym3(r,)/ det(r,)? has labeled Hodge-Tate weights slightly less than 0, H?(G, sym?(r,)/det(r;)?) is
torsion for any characteristic 0 point x of Spec R. [3] follows from Lemma 3.3.1.1, and [4] follows from
Proposition 3.0.3.

7.2.2. The long root parabolic case

Let Q < G5 be the long root parabolic. @ has a Levi decomposition Q = L' x V. Fix an isomorphism

std : I’ => GLy. Write det for the composition L’/ LR GLo det, GL;.

Let {1} = Vp < Vi < Vo © V3 =V be the upper central series of V. Then the conjugation action of
L' on each graded piece is given by
o V3/Vy =~ det ®std;
e 1) / Vi = det;
o V7 =~ std.
Suppose p factors through the long root parabolic ), but not the short root parabolic P. Then the
Levi factor )
PG B Q(Fp) — L'(Fy)
is necessarily an irreducible representation. If we endow each graded piece of V(F,) with the Galois
action G 0> L(Zp) — GL(Vi41(F,)/Vi(Fp)), then we have, by local Tate duality,

H*(Gr, V3(F,) /Va(Fy)) = H*(Gk, 7@ det7) = 0

H*(Gg,Vi(Fp)) = H* (G, 7) = 0
So the only cohomological obstruction occurs in the second graded piece.

The datum of p is encoded in a non-abelian cocycle [¢] € H (G, V (Fp)). Just as is done in the short
root parabolic case, it suffices to lift the cocycle [¢]. By Proposition 5.3.1, since the only cohomological
obstruction lies in the second graded piece, it suffices to lift ad([¢]) € HY(Gk, (V/V1)(Fp)).

Write U’ for V/V;. Recall that U’ is a unipotent group of class 2 with rank-1 center, and we can
directly appeal to Theorem 5.2.1. We repeat the procedure worked out in the short root case 7.2.1.

Let r° be a lift of 7 such that r° is Hodge-Tate regular and crystalline and the Hodge-Tate weights
of r° are strictly less than 0.

Let Spec R be the irreducible component of the crystalline lifting ring of 7 containing r°. Write
Y G — GLa(R) for the universal family.

Write Z(U) for the center of U’, and write U 24 for U’/Z(U’). Write ¢*d for the conjugate action
L' — Aut(U'2%) and write ¢* for the conjugate action L' — Aut(Z(U")).

Note that ¢ad(runiv) = puniv 504 ¢z(runiv) = det pmiv_

We have the following check list:
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1] H?*(Gg,det(r™V)rwnivy is SGR;
2] p#2
[3] There exists a finite Galois extension K’/K of prime-tp-p degree such that ¢(7)|g,., is Lyndon-
Demuskin; and
[4] There exists a Zp—point of Spec R which is mildly regular when restricted to Gg.
By the assumption H?(Gg,det(r"™V)r™iv) = (. [3] follows from Lemma 3.3.1.1, and [4] follows from
Proposition 3.0.3. U

A. Non-denegeracy of mod w cup product for G,

Let F be a finite field of characteristic p > 3. Write G5 for the Chevalley group over F of type Ga.

Let P be the short root parabolic of Go. Let P = L x U be the Levi decomposition. Let 7 : Gg —
L(F) be a Galois representation which is Lyndon-Demuskin. Since L =~ GLa, 7 is the extension of two
trivial characters.

Denote by ¢ : L — Aut(U) the conjugation action.

G acts on U via the conjugate action G LAY SR Aut(U).
We set up a computational framework to prove various claims. Let {zg, - ,Zpn,Zns+1} be the

Demuskin generators.
Let {e1, ea} be a basis of the representation space of 7 such that r° is upper-triangular with respect

to this basis. Without loss of generality, assume e; = [(1)] ,ey = [(1)] Say for ¢ = 0,---,n + 1,
1

F(CCZ) = 11

The set {e},e2eq, e1€3, €3} is a basis of the representation space sym3(7), which is identified with
Uad(F).

The root system of G2 can be found in Subsection 7.1. In the diagram, « is the short root, and 8
is the short root. Each root x generates a root group U, < U. The short root parabolic P has 7 root
groups: the 5 root groups

{Us, Us+a>Up+20, Ug+3a5 Uzgr3a}t
lying above the z-axis generates the unipotent radical U, the two root groups {U,,U_,} lying on the
x-axis are the root groups of the Levi factor group L. Say under the identification std : L =~ GLg, the

matrices [0 8] are identified with the root group U,. Now that we have identifications
spane; ~ U 8
span 6%62 ~ Ugia
span eq e% ~ Ugt2a
spaney ~ Ugisq
For ease of notation, write Ey := ei’, Fi = 6%62, Ey = ele%, FEs = e%. A basis of

Cip(U*(OR)) = {(zo, -+, 2nt1) — Us(Or) ® Usa(Or) ® Usy00(Or) ® Usy34(0OFp)}
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is given by
zyEo, 2T Eo, ..., x},1Fo,
B x[}:El,xi‘El, S AR
:EOEQ,.TTEQ, ey $;+1E27
.CC§E3,$TE3, ey $Z+1E3
where 2} E; is the cochain ¢ : (xq, - -, Zn+1) such that ¢(xy) = 6;1E;, where d;;, is the Kronecker delta.

For any c e Ci (U ad) "we can write down the %-coordinates [c]z := (¢y)vez Of c.

A.0.1. Lemma The cup products on cochains
ur : Cip (U (F)) x Cip(U*(F)) — Cip(Z(U)(F))

is non-degenerate.
Ideas We compute the cup products v uw for v, w € 4. The matrix [Ur]4 is anti-lower-triangular,
(that is, of the shape

0 0 0 =
0 0 = =
0 % =% =
* % % %

whose anti-diagonal blocks are constant invertible matrices ), and thus non-degenerate.
To help the reader better understand what’s going on, we attached SageMath code in the Appendix
B.

Proof. Recall the relator of the Lyndon-Demuskin group is

R = al(zo, 1) (w2, 23) . .. (T, Tp1)-

Since we are working mod o, we have for any p > 5, any g € Gk, ¢(7(g))? = id mod w (See Appendix
B for the verification). In particular, the relator R reduces to

(o, 21) -+ .. (Tp, Tpy1)

when we compute mod w. (When p = 5, things are still good, and can be confirmed by running the
SageMath code in the appendix.)
We regard cochains in Cfp (U*4(F)) as a (U*4(F))-valued function on the free group with generators

{%0, cee 7$n+1}a
Now we let ¢ be the “universal” mod w 1-cochain. That is, we let

A0,05 A0y c-es Ant1,0s
A0L, ALy oees Anglls
A02, A2y ey Ang12s
X033, A3y --er Ant13

be indeterminants, and set
=Y NijafEj € Clp(U*(F) @ Z[Ai ).
The cup product
cue=Q(c) € Cip(Z(U)(F)) @ Z[ij] = Z(U)(F) @ Z[Ni 5] = F[Aij]
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will be a quadratic form in variables {); ;}, and the matrix of this quadratic form is nothing but the
matrix [Ur]g. Recall that ¢ U ¢ = Q(c) is defined to be the projection of ¢(R) onto the center of the
Lie algebra LieU, where ¢ € Cip(U(F)) is the unique extension of ¢ to a U(F)-valued cochain as is

explained in Section 2.
Write [Ur]# as a block matrix

B B+a B+2a  P+3a

B My | Mg | Mz | My

[Ue]y = 21 May | Mo | Mas | Moy
B+2a | M3y | M3o | M3z | M3y

B+3a \ My | Myo | Myg | Myy

where each M;; is an (n 4+ 2) x (n + 2) matrix. We say the blocks Moa, M3z, Mss, Maa, Mz, Muy are
strictly below the anti-diagonal, and we call My, Mss, Mog and My, the anti-diagonal blocks.

B  B+a B+2a B+3a

B
B+a Moy
B+2a Mss | M3y
B+3a My | My3 | Mygy

FIGURE 1. Strictly below anti-
diagonal

Sublemma Let g = g1g2 ... gs. Write ¢; for ¢(7 (g, .. .

B B+a  fB+2a  [+3a
B M4
B+a Mgg
B+2a M32
B+3a My
FIGURE 2. Anti-diagonal
blocks

,gi—1)). We have

2g) = Y oidla) + 5 Dolar), 652(9,)]

i<j

Proof. An immediate consequence of the Baker—-Campbell-Hausdorff formula. g

Note that ¢(7((xs,x;)) = id, so
¢R) =
1

= > (wak, Takt1)) + 3

We have

5(908(560, x1)(z2,23) - . (Tn, Tnt1))

Z [E((w25, 225+1), S((T2ks T2k+1)]
i<k

(war, wak41)) = — (25 ) (B(wor41) — D)e(@an) + ¢z w1 ) (Do) — 1)E(@op41) + Zi = Vi + Z

where Z, is a sum of Lie brackets (see below), and lies in the center of the Lie U. Note that [Y}, Y]
only contributes to the part of [Ur]|# which lies strictly below the anti-diagonal, because (¢(xar) — 1)
and (¢(zax4+1) — 1) moved the appearance of the inderterminant A; ; from the root group Ugy jq to the

root group Ugy(j11)a-
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So it remains to analyze Y, Z,. We have

27, = |- ¢($2k) c(wag,), ¢(m2k$2k+1) (wor+1)]
+ [= ¢($2k)( Top), ¢($2k$2k+1) c(war)]
+ [~y )e(war), + (w5 @y 22k)(22k41)]
+ [= qﬁ(x% m2k+1) c(wap41), +¢($2k I2k+l) c(war)]
+ [= ¢($2k $2k+1)g($2k+1) +¢($2k $2k+1$2k) (wop41)]
+ [q{)(x% 352]<;+1) c(zar), +¢(952k $2k+1ﬂ32k) (xar41)]
Write
27, = [—Claaw), —c(@op+1)]

+  [=c(war), cwar)]

+  [—e(war), E(warr1)]

+  [—C(@ak+1), (war)]

+  [—@ok+1), E(@ok+1)]

+  [e(zak), (xar11)]

Z,, is obtained by replacing all Galois action in Zj, by the trivial action. Zj — Z;, only contributes to
the part of [Ur]s with lies strictly below the anti-diagonal for a similar reason (a “shifting” effect).
It is easy to see that

Zy = [&won), A(wors1)] = T2k 0A26+1,3 £ Aokt1,0A2k,3 T 3Aok 1 A2k+1,2 £ BA2kt1,2A2k,1-

As a consequence of these computations, we see that each of the anti-diagonal blocks of [U]4 are
constant matrices:

e
—1/2
+My = + My = [1/2 ]
! e
and ] )
e
—3/2
+M3zy = +Mo3 = [3/2 ]
| e ]
So [Ur] is an invertible matrix. 0

The long root parabolic case is much simpler.
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B. Sagemath code

B.0.1. Proposition Let V < B be the unipotent radical of the Borel of G2. Let g € V(Z,). If p > 5,
then ¢” = id mod w.

Proof. Let P > B be the short root parabolic. Let P = L x U be the Levi decomposition. Let
7w : P — L be the quotient. Say w(g) = {é i] Fix a projection P — U. Also fix a projection
U — Z(U). Say the projection of g onto U/Z(U) =~ A* via P — U — U/Z(U) is (ug,u1,us,us). Say

the projection of g onto Z(U) = Al via P — U — Z(U) is uy.
For simplicity, we write g = (I; ug, u1, ug, ug; uq). We have, for any integer q,

1
gt = (ql;quﬂa—§Q(q—1)U0l+qU1a

1
—éq(q —1)(2¢ — 1)u0l2 + q(q — Durl + que,

1 1 3
——q*(q — 1)*upl® + (e —1)(2q - Dugl? + 5@ = Dual + qug, qua;

4
1 1
To5(@ — Dala + )B3¢* = 2)ugl® = (g = Dalg + 1)(uf + uous)l)
It can be computed by hand, and can be verified by computer algebra system. The Proposition follows
from the above computation immediately. O

The SageMath source code for computing is on the website sharkoko.space.
If we compute cup_product_mod_p(5,4,4) in SageMath notebook, we’ll get an anti-lower-
triangular matrix in the sense of Lemma A.0.1.
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